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1 Scientific Goals

1. Write a code in C++ to solve the kinetic equations of relativistic electrons in an isotropic
photon field, including synchrotron, inverse Compton , e+−e− pair production and pair annihilation.

2. Calculate the interactions between extragalactic gamma-ray background (EGB) photons and
the cosmic Microwave-Infrared background.

2 Radiation Processes from Relativistic Electrons

We consider an isotropic plasma containing relativistic electrons, positrons and photons, and the
system is replenished by a time-independent magnetic field. All calculations are performed in the
comoving frame, thus, the distributions of photons and particles can be assumed to be homogeneous
and isotropic. From the conservation of energy we can write the equation

d

dt
uγ(t)Φ(ϵ, t) =

[
∂

∂t
ν(ϵ, t)

]
sy+IC+pair

(1)

where uγ(t) is total energy density of photons at time t in the unit of erg cm−3 and the right-
hand side ∂

∂tν(ϵ, t) represents the total emissivity of synchrotron, IC and pair processes. Here, the
instantaneous radiation spectrum is characterized by Φ(ϵ, t) and ϵ = hν/mec

2.
To solve the kinetic equation, we iterate the difference form

Φ(ϵ, t+∆t) = Φ(ϵ, t) +
∆t

uγ(t)

[
∂

∂t
ν(ϵ, t)− Φ(ϵ, t)

d

dt
uγ(t)

]
, (2)

d

dt
uγ(t) =

∫ ϵmax

ϵmin

∂

∂t
ν(ϵ, t)dϵ, (3)

uγ(t+∆t) = uγ(t) + ∆t
d

dt
uγ(t). (4)

As we can see from these equations, the most important task is to calculate the emissivity of
synchrotron, IC, pair annihilation and the energy loss rate from pair creation.

2.1 Synchrotron

In the following calculations the electrons are assumed to be highly relativistic
(γmin, γ̄ ≫ 1) and isotropic, moreover, the energy increase by synchrotron self-absorption
is neglected. For the highly relativistic case (β = v/c ≈ 1, γ ≫ 1), the power per unit frequency
emitted by each electron is

P (ω, γ) =

√
3q3Bsinθp
2πmec2

F (X) (5)
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where, θp is the angle between electron velocity direction and the magnetic field, X = ω/ωc,

ωc =
3
2γ

2 qB
mec

sinθp. F (X) is given by

F (X) = X

∫ ∞

X
K5/3(η)dη (6)

where K5/3(η) is modified Bessel function. Utilizing the relationship P (ω, γ)dω = P (ϵ, γ)dϵ, we
obtain the radiated power as a function of ϵ and γ

P (ϵ, γ) = P (ω, γ)

∣∣∣∣dωdϵ
∣∣∣∣ = √

3q2Bsinθp
h

F

(
2m2

ec
3ϵ

3γ2qBsinθp~

)
. (7)

The total power radiated per unit volume per unit ϵ by a normalized electron distribution Fe(γ) is
given by the integral of Fe(γ)dγ times the single particle radiation formula over all γ[

∂

∂t
ν(ϵ, t)

]
sy

= ne

∫ γmax

γmin

P (ϵ, γ)Fe(γ)dγ, (8)

where ne is the density of electrons. General formulae are required to calculate the emis-
sivity when this process is dominated by cyclosynchrotron (γ ≈> 1) or self-absorption
plays a significant role.

2.2 Inverse Compton scattering

The characteristic cooling time for IC is tc ≈ q/λcneσT γ̄
2 where q is a dimensionless

constant in order of unity and λ = uγ/u0. For typical GRB conditions, we have tacc,e ≪
tc ≪ ∆/c, here ∆ is the width of the emitting region in the comoving frame. Thus
the cooling process occurs locally. According to Pilla & Loeb (1998), if ζB ≪ ζe,
the synchrotron cooling time is long and we must take multiple IC scattering into
consideration, here the magnetic parameter ζB = B2/8πnempc

2(γ̄p − 1), the electron
parameter ζe = γ̄0me/(γ̄p − 1)mp and the average Lorentz factor of protons γ̄p ≈ 3. The
the second term of equation(1)’s right-hand side from multiple IC scattering is[

∂

∂t
ν(ϵ, t)

]
IC

=
uγ
2T

∫ 1

−1
dµ(1− µ)

∫ γmax

γl

dγFe(γ)
Φ(ϵ, t)

⟨γ2⟩0
ζ
σKN

σT
(9)

where µ is the cosine of the scattering angle, 1/T = cneσT
⟨
γ2
⟩
0
, γl = max(γmin, ϵ), ζ = γ/(γ− ϵ) =

1 + 2γ(1 − µ)ϵ1, ϵ1 = ϵ/2γ(1 − µ)(γ − ϵ) and σKN = 3σT (ζ
2 − 2ζ/3 + 1)/4ζ3 is the Klein-Nishina

cross section. By integrating both sides of equation(9) over ϵ, we obtain (duγ/dt)IC . Here we use
the relation |dϵ/dϵ1| = 2(1 − µ)γ2/ζ2 to convert the integral to be over ϵ1. Finally we divide the
integral by 2 to avoid the double accounting of the scattering and we get(

duγ
dt

)
IC

=
uγ
2T

∫ 1

−1
dµ(1− µ)2

∫ γmax

γmin

dγFe(γ)

∫ ϵmax

ϵmin

dϵ1Φ(ϵ1, t)
γ2

⟨γ2⟩0
1

ζ

σKN

σT
. (10)

2.3 Pair creation

The production rate of e+ − e− with Lorentz factor in the range γ to γ + dγ by an isotropic
photon field with photon density nph(ϵ, t) = uγ(t)Φ(ϵ, t)/(ϵmec

2) is

∂

∂t
neP (γ, t) =

3

4
σT c

∫ ∞

0
dϵ1

nph(ϵ1, t)

ϵ21

∫ ∞

max(1/ϵ1,γ+1−ϵ1)
dϵ2

nph(ϵ2, t)

ϵ22

×

(√
E2 − 4ϵ2cm

4
+H+ +H−

)ϵUcm

ϵLcm

;

(11)
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ϵ1,2 are the scattering photons energies in the unit of mec
2, E = ϵ1 + ϵ2, and ϵcm is the photon

energy in the center-of-momentum frame, given by ϵcm =
√
2ϵ1ϵ2. The functions H± are calculated

using
c± = (ϵ1,2 − γ)2 − 1, (12)

d± = ϵ21,2 + ϵ1ϵ2 ± γ(ϵ2 − ϵ1). (13)

For c± ̸= 0, H± are given by

H± =− ϵcm

8
√

ϵ1ϵ2 + c±ϵ2cm

(
d±
ϵ1ϵ2

+
2

cpm

)
+

1

4

(
2− ϵ1ϵ2 − 1

c±

)
I±

+

√
ϵ1ϵ2 + c±ϵ2cm

4

(
ϵcm
c±

+
1

ϵcmϵ1ϵ2

)
,

(14)

where

I± =


1√
c±

ln
(
ϵcm

√
c± +

√
ϵ1ϵ2 + c±ϵ2cm

)
, c± > 0;

1√
−c±

arcsin
(
ϵcm
√

− c±
ϵ1ϵ2

)
, c± < 0.

(15)

For c± = 0,

H± =

(
ϵ3cm
12

− ϵcmd±
8

)
1

(ϵ1ϵ2)3/2
+

(
ϵcm3

6
+

ϵcm
2

+
1

4ϵcm

)
1

√
ϵ1ϵ2

(16)

The upper and lower integration limits in equation (11) are given by

ϵUcm = min(
√
ϵ1ϵ2, ϵ

a
cm), ϵLcm = max(1, ϵbcm), (17)

where

(ϵa,bcm)2 =
1

2
{γ(E − γ) + 1±

√
[γ(E − γ) + 1]2 − E2}. (18)

The total loss rate of photons in the energy interval ϵ1 to ϵ1 + dϵ1 by pair creation is

RP (ϵ1, t) = −nph(ϵ1, t)
c

2

∫
d(cosθ)(1− cosθ)

∫ ∞

2/ϵ1(1−cosθ)
dϵ2nph(ϵ2, t)σ(ϵ1, ϵ2, θ) (19)

here, the cross section is given by

σ(ϵ1, ϵ2, θ) =
3

16
σT (1− β

′2)

[
2β

′
(β

′2 − 2) + (3− β
′3)ln

(
1 + β

′

1− β′

)]
(20)

and

β
′
=

[
1− 2

ϵ1ϵ2(1− cosθ)

]1/2
. (21)

In this code, the loss rate of radiation energy density is obtained using equation(19)[
∂

∂t
ν(ϵ1, t)

]
pair creation

= ϵ1mec
2Rph(ϵ1, t). (22)

The spectra of emergent electrons and positrons can be calculated utilizing equation(11), here we
follow Péer & Waxman (2005) that the spectrum of emerging pairs is determined by
the photon energies: (1) For 1.01 ≤ ϵ1ϵ2 ≤ 104, the exact spectrum can be obtained by
solving equation(11). (2) For ϵ1ϵ2 ≤ 1.01, a monochromatic spectrum of the created
particles is assumed, with energy (ϵ1 + ϵ2)/2. (3) If ϵ1ϵ2 ≥ 104, the energies of created
particles are taken to be γ

′
1 = max(ϵ1, ϵ2) and γ

′
2 = min(ϵ1, ϵ2)+1/[2 min(ϵ1, ϵ2)] respectively.
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2.4 Pair annihilation

The total loss rate of electrons with Lorentz factor from γ1 to γ1 + dγ1 due to pair annihilation
is given by

∂ne−Anni(γ1, t)

∂t
= −ne−(γ1, t)

c

2γ1

∫
d(cosθ)

∫
dγ2ne+(γ2, t)β

′
2

dn
′

dn
σanni(γ

′
2), (23)

where γ
′
2 = γ1γ2(1 + β1β2cosθ) is the Lorentz factor of positron in the electron-rest frame, β

′
is the

corresponding velocity in this frame and dn
′
/dn = γ1(1+β1β2cosθ). The cross section σanni for the

annihilation between a positron with Lorentz factor γ1 and a rest electron is

σanni(γ) =
3

8

σT
γ + 1

[
γ2 + 4γ + 1

γ2 − 1
ln
(
γ +

√
γ2 − 1

)
− γ + 2√

γ2 − 1

]
(24)

The loss rate of positrons is calculated in the similar way. As shown in Svensson (1982), the
photon spectrum is narrowly concentrated around the energies of annihilated particles,
(γ1,2mec

2). To obtain the increase rate spectra of photons, we assume that the emergent
photons with dimensionless energies ϵ1,2 are generated from pairs having the Lorentz
factors γ1,2 ≈ ϵ1,2, which means e+(γ1) + e−(γ2) → photon1(ϵ1 = γ1) + photon2(ϵ2 = γ2). Thus
we have[

∂

∂t
ν(ϵ = γ, t)

]
pair anni

= −ϵmec
2dneA(γ, t)

dt
= −ϵmec

2

[
∂ne−Anni(γ, t)

∂t
+

∂ne+Anni(γ, t)

∂t

]
. (25)

So far, we have found all compositions of the total changing rate of radiation energy density and
the right-hand side term of equation(1) can be calculated[

∂

∂t
ν(ϵ, t)

]
=
∑
i

[
∂

∂t
ν(ϵ, t)

]
i

, (26)

here, the summation of i is carried out over the elements of aggregation S ={sy, IC, pair creation,
pair annihilation}. In addition, if pair processes are included in the calculation, the electron/positron
spectrum will evolve due to pair creation and pair annihilation in the way

ne−,e+(t+∆t, γ) = ne−,e+(t, γ) +

[
∂

∂t
neP (γ, t) +

∂ne−,e+Anni(γ, t)

∂t

]
∆t. (27)

3 Numerical Methods

To calculate the single and multiple integrations in the left-hand side of equation(1) numerically,
adaptive Simpson integral and adaptive Monte Carlo method are employed respectively. Details
about adaptive Simpson integration can be found in the book Numerical Recipes and a brief
introduction to adaptive Monte Carlo method is presented below.

The concrete procedures can be found in Pilla et al (1997). Before Pilla, a algorithm given by
Lepage (1978) is widely used in particle physics and the code implementing this method, known as
VEGAS, can be found in Press et al (1992). However, Pilla et al (1978) argues that there are some
shortcomings in VEGAS, such as weak convergence and numerical instability in high energy tail.
Because all of these, we use the method given by Pilla et al to solve multidimensional integrations.
Here, we consider a one-dimensional integration I =

∫ 1
0 f(x)dx without losing the generality and

any characteristics of this method. At first, we need to discretize the domain of integration as
0 = x0 < x1 < x2 < ...... < xN = 1 and ∆xi = xi − xi−1 for i = 1, 2, ..., N , where N is an integer
great than 1. We use the following p(x) as the normalized probability distribution,

p(x) =
1

N∆xi
, if x ∈ [xi−1, xi) (28)
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in order that
∫ xi

xi−1
p(x)dx = 1/N for all i. Here, the bin sizes ∆xi need not to be equal but all bins

have the same probability weight. Now the approximated result is I ≈
∑M

k=1 f(ζk)/Mp(ζk), where
ζk are uniformly distributed random numbers in the interval [0, 1). In general, the integer M is
much greater than N . Let

ui =
N

M

M∑
k=1

ci(k) |f(ζk)| , (29)

where ci(k) = 1, if xi−1 < ζk < xi and ci(k) = 0 otherwise. Obviously,
∑N

i=1 ui∆xi = I. Therefore,
wi = ui∆xi/I is the importance weight of the ith bin. Since different bins contribute different
amounts of the integral, the idea now is to find a new discretization scheme {x1, xx, ..., xN} so that
all bins have the same importance weight 1/N . Let l be an integer such that

l∑
m=1

wm ≤ iw0 <
l+1∑
m=1

wm. (30)

The new boundary location of the ith bin is given by

xi,new = xl,old +
1

w0

(
iw0 −

l∑
m=1

wm

)
(xl+1,old − xl,old) (31)

However, in practice we must damp the convergence so that the contribution from the low impor-
tance bins is not overly suppressed. As in the method by Lepage, we will damp the convergence by
using the modified importance weights given by

w
′
i =

[
1− wi

ln(1/wi)

]α
(32)

which gives w
′
0 =

∑N
i=1w

′
i/N . We now replace w0 and wi with w

′
0 and w

′
i and repeat this process

iteratively until
∑N

i=1 |xi,old − xi,new| /
∑N

i=1 |xi,old + xi,new| < θ (here θ = 10−3), then we can obtain
the desired result for I. In all our calculations, we follow Pilla et al to take N = 70, α = 1.3 and
M = 20000. It’s easy to extend the scheme to multidimensional integrations.

Interpolation and functional approximation are used in the code to calculate the intensity of
a discrete spectrum at an arbitrary energy and to obtain the modified Bessel function K5/3(x),
respectively. For more details, please refer to Numerical Recipes.

4 Specific Astrophysical Calculations

4.1 Power law electrons

In this case, we use the same initial parameters and electron distributions as (Pilla & Loeb,
1998) to test the code: the magnetic field B = 4.9 × 104 Gauss (ζB = 0.1), electron density
ne = 3.1× 1012 cm−3, escape time of radiation tc = ∆/c = 1.2s, where ∆ is the width of emitting
region, and the minimum Lorentz factor γmin,0 = 1656.46 (ζe = 0.3). The fraction of electrons per
unit interval dγ is Fe(γ, t) = (p − 1)γmin(t)

p−1γ−p, where γmin(t) = p−2
p−1 γ̄(t). We assume that in

the cooling process of electrons, the power law maintains a constant index p = 3.5 and with the
increase of radiation energy density, the γ̄(t) is given by

u0 = uγ(t) + ue(t) = uγ(t) + neγ̄(t)mec
2 (33)

where u0 = neγ̄0mec
2 is the initial kinetic energy density of electrons.

We assume that the radiation energy density is initially small and, hence, the electrons start
losing their energy via synchrotron emission. As the energy density of the emitted radiation builds
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Figure 1: The evolution of spectrum in the early phase. In this phase λ increases to unity.

up, cooling via IC scattering becomes important as well. In this calculation, the pair creation comes
into play after the electrons cool and decouple (λ = uγ/u0 u 1). Moreover, the pairs are relativistic
when they are created; eventually, they transfer almost all their energy back to the radiation field
via IC scattering and synchrotron which means the pairs are created but they do not annihilate.

Figure 1 illustrates the evolution of spectrum in the early phase when the process is dominated
by IC and synchrotron. From this figure we find that with the spectrum evolving, the peak of
synchrotron shifts to low energies and another peak develops due to IC scattering. When almost the
kinetic energy is transferred to radiation, pair creation is activated and will dominate the subsequent
evolution. Figure 2 shows the spectra of pair creation rate ∂

∂tneP (γ, t) (left) and radiation absorption
rate ϵmec

2RP (ϵ1, t) (right) immediately after pair creation is activated. From the left figure, the
electrons creating rate increases rapidly at γ >≈ 1 and then decreases in a power-law function. Since
the pair creation occurs when a high-energy photon interacts with a low-energy photon, there should
be two absorption peaks and this is consistent with the right figure. The consequent evolution of
the radiation spectrum can be found in figure 3. The high-energy photons exhaust rapidly due to
pair creation and the increase of low-energy photons is not very conspicuous.
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Figure 2: Spectra of pair creation rate (left) and photon energy density loss rate (right).
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Figure 3: Subsequent evolution caused by pair creation

4.2 Thermal electrons

In this situation, the kinetic energy of electrons comes from thermal motion and the fraction of
electrons per unit interval dγ is described by the Maxwell-Boltzmann function

Fe(γ, t) =
α

K2(α)
βγ2exp(−αγ), (34)

where α = mec
2/kT (t), the velocity β = (γ2 − 1)1/2/γ and k is the Boltzmann constant. The

temperature of electron gas evolves with time in the way

u0 = uγ(t) + ue = uγ(t) + nekT (t) (35)

Same initial quantities are used in this calculation except the initial temperature T0 = γ̄0mec
2/k. In

the early phase, the evolution of spectrum is shown in figure 4. Similar conclusions can be obtained
as in subsection 4.1 and the strong cut-off at high energy at t = 0 is caused by the exponential
decrease of Fe(γ, t).

4.3 Interactions between EGB and Microwave-Infrared background

High-energy γ-ray photons will interact with a low-energy photon backgrounds including Cosmic
Microwave Background (CMB) and Extragalactic Background Light (EBL). As a result, e+e− pairs
will be created and they will annihilate back to radiation field until the equilibrium state is realized.
The EBL photons, concentrated in the energy range 10−3 to 10 eV, are believed to be the main
cause of γ-ray cut-off at TeV. Figure 5 shows the measurements of EGB spectrum (Ackermann et
al, 2014). Here, we calculate the interactions between EGB photons and CMB+EBL photons and
try to interpret the IGRB cut-off at 105MeV.

Noting that temperature T ∝ (1 + z) and radiation density ργ ∝ (1 + z)4, the CMB photon
density per unit energy interval dϵ at redshift z ≥ 0 is given by[

dN

dϵdV
(ϵ, z)

]
CMB

= (1 + z)4
8π

λ3
c

ϵ2

exp[ϵ/Θ(z)]− 1
(36)

where λc = h/mec ≈ 2.42 × 10−10cm is the Compton wavelength, Θ = (1 + z)kT0/mec
2 is the

dimensionless effective temperature, and T0 = 2.73 K. We use the ”Model C” given by Finke et al

7



10-5 10-4 10-3 10-2 10-1 100 101 102 103 104

ǫ [ hν/me c
2 ]

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

ǫΨ
(ǫ
)

Synchrotron

Inverse Compton

λ=uγ/u0 =0, t=0

λ=0.344, t=10−6 s

λ=0.630, t=6×10−6 s
λ=0.961, t=1.04×10−4 s

Figure 4: Early evolution of spectrum from thermal electrons

Figure 5: Fermi measurements of the extragalactic diffuse γ-ray background (Ackermann et al,
2014).

(2010) to obtain the energy density spectra of EBL at arbitrary redshifts (Figure 6). In our code,
the spectrum evolves with respect to time, however, for a single γ−ray source located at redshift
z, we must convert the integration of time to redshift. Assuming a ΛCDM universe with Ωm = 0.3
and H0 = 71 km s−1 Mpc−1, the relation between proper time and redshift is

dt

dz
= − 1

H0(1 + z)
√

Ωm + (1− Ωm)(1 + z)3
. (37)

Integrate equation(37) from z to 0, we get the time as a function of redshift, as shown in figure 7.
At first, we use a power law to fit the EGB spectra section from 102 GeV to 105 GeV and

extend the fitting to higher energy (E > 105 GeV). Figure 8 (left) illustrates the input EGB
spectrum and the local background spectra. The right figure shows the evolution of spectrum due
to the interactions between γ−ray photons and background photons. If the background is CMB, we
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Figure 6: Model C for EBL spectra at different redshifts

Figure 7: Relationship between redshift and proper time in the ΛCDM universe with Ωm = 0.3 and
H0 = 71 km s−1 Mpc−1

find that the time scale required to obtain the equilibrium state is 1013 seconds which corresponds
to the redshift z ≈ 10−4, so we neglect the redshift evolution of CMB spectra in this case. And we
find a TeV cut-off due to CMB background. After including the component of EBL background,
the results (dashed lines) are in agreement with the observed data.

Neutrinos and high-energy γ−rays are generated simultaneously when high-energy cosmic rays
undergoes the pp interactions with ambient medium. Because of this, the relation of neutrino flux
and γ−ray flux is (here, Γ = 2)

ϵ2γΦϵγ = 2Γ−1ϵ2νΦϵν |ϵν=0.5ϵγ . (38)

In this calculation, we assume the EBL is produced by a single GRB and the neutrino flux can be
found in Senno et al (2015). The input spectrum and the background are shown in Figure 9 (left).
The right figure illustrates the evolution of neutrino-related γ−ray spectrum.
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Figure 9: (Left)— The input EGB spectrum and the local background spectra; (Right)— Diffuse
flux per flavor of neutrinos (solid black); Neutrino-related γ−ray spectrum under the single-source
assumption (solid red); observed γ−ray spectra at different redshifts (dashed)

5 Discussions and Further Applications

1. This code is written in C++. To include the components of synchrotron, IC, pair production
or pair annihilation in the calculation, just include the header files to the source file and invoke the
corresponding function.

2. Since this code is used to solve the kinetic equations in the comoving frame, Lorentz trans-
formation is required when calculate the spectrum evolution in a moving frame, such as GRB jet.

Two possible science projects to which one could apply this are as follows (This part is from Prof.
Peter Mészáros):

1) Apply to photospheric gamma-ray bursts. Assume the photospheric radius is baryonic-dominated
(i.e. not magnetic-dominated, see Veres et al, 2013, ApJ, 764:94, and Meszaros, P. and Rees, M.J.,
2000, ApJ, 530, 292). Then consider a range of Lkin,iso and Γ (isotropic equivalent kinetic lu-
minosities and final Lorentz factors), say Lk,i = [1051 − 1055], Γ=[100-1000]. Assume that the
comoving-frame photospheric spectrum is of an approximate Band-type, such that the peak tem-

10



perature is similar to the Planck temperature for that Lk, but various internal processes rearrange
the low energy photon number slope to be −1 and the high energy slope to be −2 (to conserve
energy you may need to lower the normalization so that total escaping energy does not exceed the
blackbody limit). The comoving highest photon energy of the high energy slope could be 0.5 MeV
(comptonization, see Veres et al) or it could be due to pion decay effects in the comoving frame
(see Beloborodov, 2010, MNRAS 407:1033). Then with this comoving-frame spectrum, assume that
photons are emitted isotropically from the baryonic photospheric radius (but in the outward hemi-
sphere direction). You will also have to assume a jet opening angle, or width of emission region at
the radius of the photosphere, say corresponding to 5 degrees). Then check

(a) whether pair formation extends the photosphere to radii further out than the originally
assumed one (which was based on baryonic electrons only). If yes, then you will have to iterate the
photospheric radius, readjusting the peak temperature to be that corresponding to that radius, and
find the final photosphere radius.

(b) check at what energy occurs Ecut, the gamma-gamma cutoff in the high energy slope.
(c) convert this to an observer-frame energy and spectra, and check whether one obtains a cor-

relation between Lk, Γ and Ecut.

2) Another possible application would be to the hypernova/starburst problem, where, as in the
Senno et al (and other papers as well) the observed diffuse neutrino spectrum is expected to be 1/2
of the resulting diffuse gamma ray spectrum which is input into the IGM- but the EBL and CMB
then reprocess it to give a final observed diffuse gamma spectrum which should not exceed the Fermi
observed spectrum. One can use the redshift-dependent evolution of the starburst and starforming
galaxies, and the redshift-dependence of the EBL of Finke et al, and calculate self-consistently the
resulting spectrum by integrating over redshift. Of course, this can be done assuming other types
of neutrino input sources too, which may have a different redshift dependence.
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