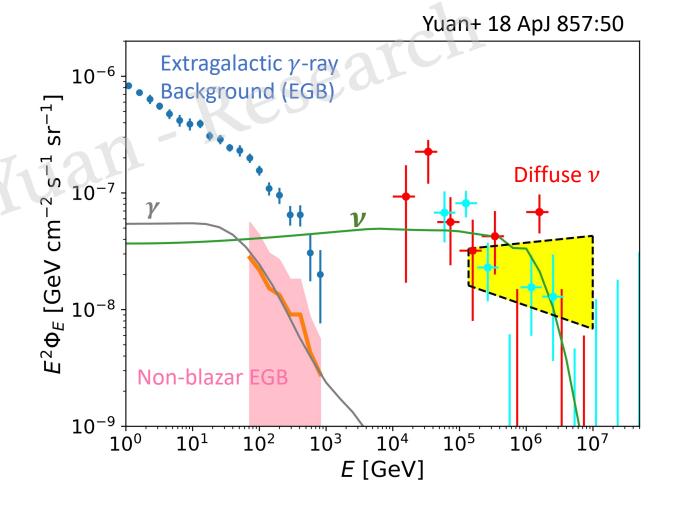
#### Galaxy/Cluster Mergers: Diffuse $\gamma$ , $\nu$ Backgrounds

Blazars account for  $86^{+16}_{-14}$  % of the total EGB flux. (Ackermann+ 2016)

but are not the dominant source of IceCube diffuse  $\nu$  background. (Aartsen+17 ...)


 $\gamma$ -ray hidden neutrino emitters -> Diffuse  $\nu$ 

#### Galaxy/cluster mergers: ✓

- Strong shocks CR acceleration + pp interaction -> HE  $\nu$
- Strong redshift evolution
  cosmic γγ attenuation with EBL/CMB
  suppresses γ-ray flux

#### We model:

halo mass function + redshift evolution of gas fraction, galactic/intergalactic magnetic field, shock velocities, ... + CR transport/interactions



#### **Stacking and Multiplet Constraints**

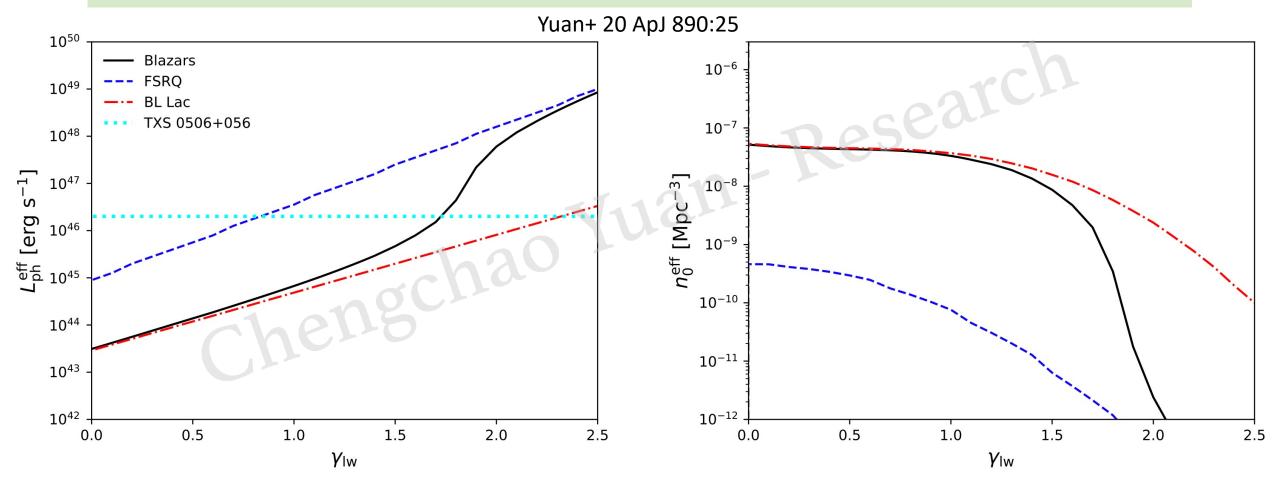
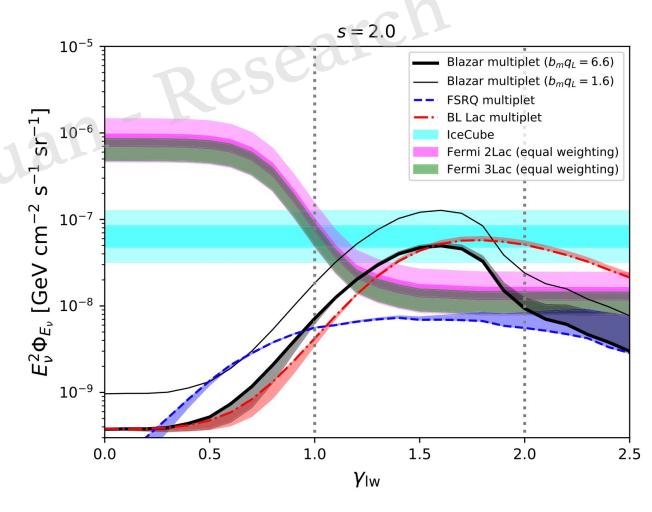


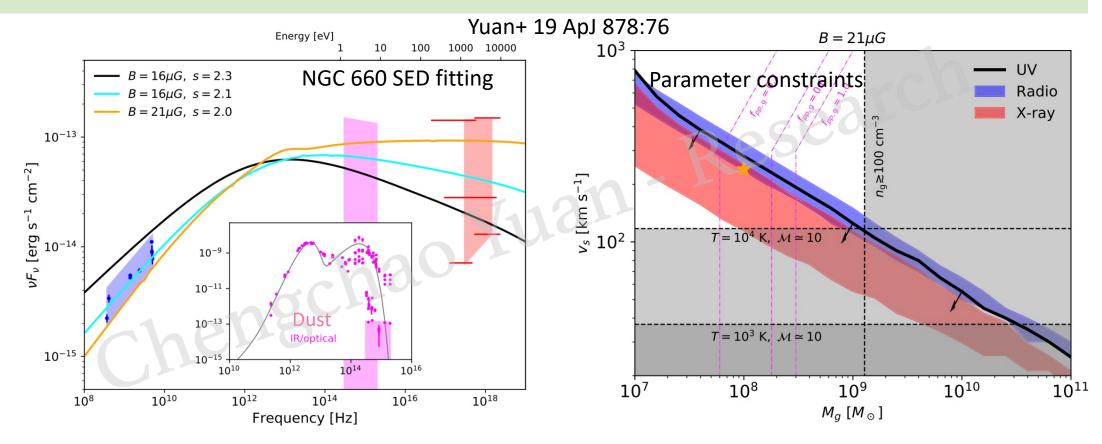

Figure 4. Left panel: the effective gamma-ray luminosity for FSRQs (blue dashed line), BL Lacs (red dashed-dotted line), and all blazars (black line). The dotted horizontal line indicates the luminosity of TXS 0506+056, one blazar that features an intermediate luminosity ( $L_{\rm TXS} \simeq 10^{46.3} {\rm erg~s}^{-1}$ ; Murase et al. 2018). Right panel: the effective local number densities for different source classes. The line styles in this panel have the same meaning as the left panel.

#### **Constraints on Blazar Neutrinos**

Stacking and cross-correlation analyses with *Fermi* 2LAC/3LAC/4LAC:

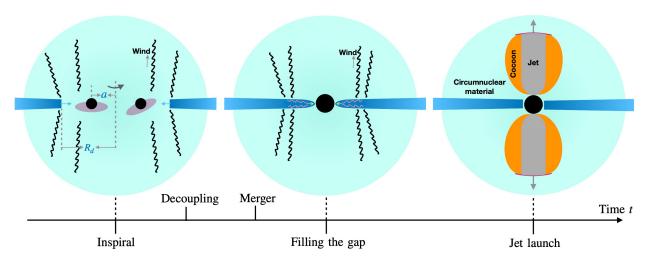

no more than 15-27% IC diff. ν (e.g., Aartsen+17, Hooper+19, Smith+21...)

Multiplet constraint: absence of clustering in HE **v**s -> tightly limits the number density and effective luminosity of sources


For a general weighting  $L_{\nu} \propto (L_{\rm ph})^{\gamma}$ , they are complementary.

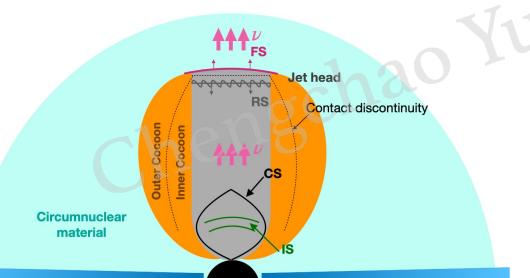
Blazars are disfavored as the dominant sources of the 100 TeV  $\nu$  background.

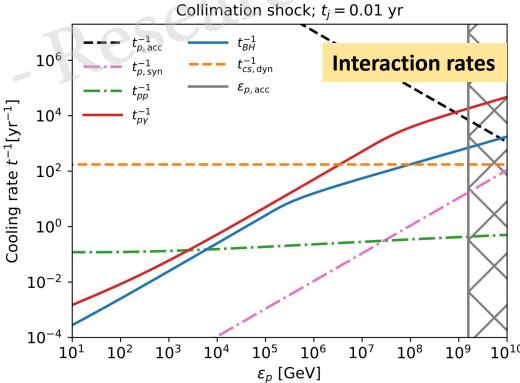
But, can AGNs be the main source?




# Galaxy/Cluster Mergers: Secondary EM Emission




- pp collision -> secondary  $e^{-}/e^{+}$  (+galactic mag. field) -> observable radio/X-ray emission (via synchrotron + synchrotron self-Compton)
- This scenario can explain the radio and X-ray fluxes of merging galaxies such as NGC 660.
- Stringent constraints on gas mass, shock velocity, mag. field, and the CR spectral index.


# Vs from SMBH Mergers: Physical Picture



Merger -> circumnuclear gas bubble (wind) + jet (BZ mechanism) -> internal, collimation, forward and reverse shocks -> VHE CRs, PeV neutrinos ( $p\gamma$ )

#### Time lag between GW burst and jet launch: 10-3-10-2 yr





# $\nu$ s from SMBH Mergers: Detectability, Diff. $\nu$

Neutrino detection rate  $\dot{N}_{\nu,i}$  for SMBH mergers within the LISA detection range  $z \lesssim 6 \; [{\rm yr}^{-1}]$ 

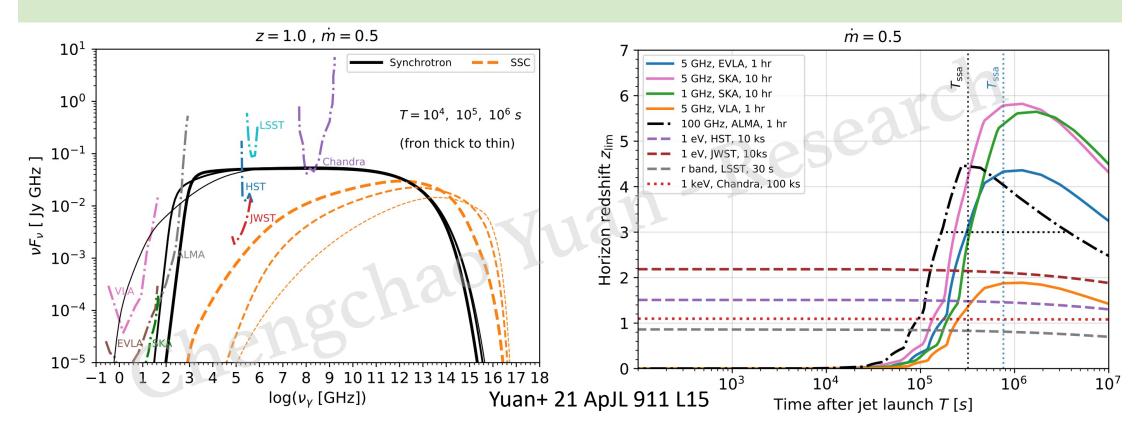
|          | Optimistic parameters                                                                                   |                      |                      |                                                                                                              | Conservative parameters |                      |                      |
|----------|---------------------------------------------------------------------------------------------------------|----------------------|----------------------|--------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|----------------------|
|          | $\dot{m} = 10, \ L_{k,j} \simeq 3.4 \times 10^{46} \ {\rm erg \ s^{-1}}, \ \epsilon_p = 0.5, \ h = 0.3$ |                      |                      | $\dot{m} = 0.1, \ L_{k,j} \simeq 3.4 \times 10^{44} \ \mathrm{erg \ s^{-1}}, \ \epsilon_p = 0.5, \ h = 0.01$ |                         |                      |                      |
| Scenario | IC (up+hor)                                                                                             | IC (down)            | IC-Gen2 (up+hor)     |                                                                                                              | IC (up+hor)             | IC (down)            | IC-Gen2 (up+hor)     |
| CS       | 0.019                                                                                                   | 0.014                | 0.16                 |                                                                                                              | $8.2 \times 10^{-5}$    | $4.3 \times 10^{-5}$ | $3.7 \times 10^{-4}$ |
| IS       | $9.1 \times 10^{-4}$                                                                                    | $7.8 \times 10^{-4}$ | $4.2 \times 10^{-3}$ |                                                                                                              | $1.7 \times 10^{-6}$    | $1.3 \times 10^{-6}$ | $9.5 \times 10^{-6}$ |
| FS       | $2.6 \times 10^{-3}$                                                                                    | $1.8 \times 10^{-3}$ | 0.013                |                                                                                                              | $9.6 \times 10^{-5}$    | $7.2 \times 10^{-5}$ | $4.1 \times 10^{-4}$ |
| RS       | 0.011                                                                                                   | $8.4 \times 10^{-3}$ | 0.044                |                                                                                                              | $3.5 \times 10^{-4}$    | $1.9 \times 10^{-4}$ | $2.1 \times 10^{-3}$ |







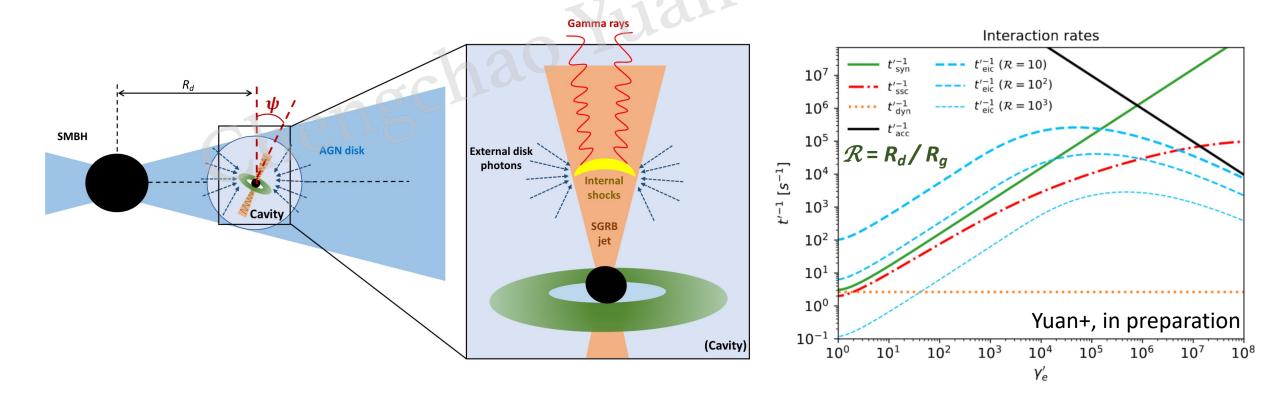
 $E_{\nu} [{\rm GeV}]$ 


Optimistic case (super-Edd.): IceCube Gen2 + LISA coincident detection rate ~1-2 per decade; Challenging for sub-Edd. cases.

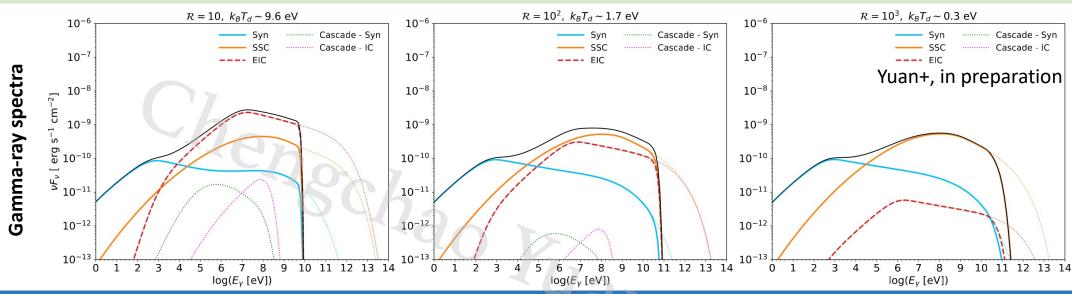
Optimistic cases can explain a significant potion of diffuse  $\nu$  in the 1-100 PeV energy range. Can be tested by next-gen  $\nu$  detectors.

**Uncertainties**: luminosity and redshift distributions of SMBH mergers

Yuan+ 20 PRD 102.083013


#### **SMBH Mergers: EM Counterpart**

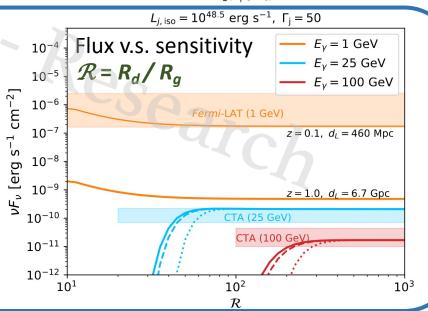



- Inside the pre-merger wind bubble (disk-driven winds), the jet is mild relativistic  $\Gamma \sim 2.0$
- Early radio emission is suppressed by synchrotron self-absorption (SSA)
- Non-thermal EM (syn.+SSC) signals are detectable up to the detection horizon of LISA,  $(1-10)f_b$  per year
- Initial observation with large FOV telescopes (SKA, LSST) can guide narrow FOV detectors.

#### **Short GRBs in AGN Disks: Physical Condition**

- A subpopulation of short GRBs occurs in the AGN accretion disks near a migration trap.
- Winds from BNS (highly super-Eddington) -> low-density cavity -> successful GRB jets
- Non-thermal electrons -> syn. + SSC + external inverse Compton (EIC, with thermal disk photons)
- EIC component depends on the distance to the SMBH,  $R_d$  ( $\mathcal{R} = R_d / R_g$ ,  $R_g$ : Schwarzschild radius)




### **Short GRBs in AGN Disks: Gamma Rays**



- Extended emission:  $L_{k,iso} \sim 10^{48.5}$  erg/s, duration  $10^2-10^3$  s,  $\Gamma \sim 50$
- **HE cutoff:**  $\gamma\gamma$  attenuation with disk photons; **Cascade subdominant**
- Close to SMBH (low  $R_d$ ): more EIC flux, stronger HE cutoff
- 25 GeV 100 GeV: detectable for CTA upto z = 1.0
- Gamma-ray (CTA) + GW (LIGO) joint detection rate

$$\dot{R}_{\rm SGRB-AGN}^{(L)} = f_{\rm EE} f_b f_{\rm L,BCO/BBH} \dot{R}_{\rm L,BBH}$$
  
  $\sim (2.5 \times 10^{-3} - 0.35) \theta_{i,-1}^2 \text{ yr}^{-1}.$ 

Next step: implications to neutrino detections

