The Limits of Quintessence

February 2, 2018

1 Introduction

In this summary we will briefly talk about the dynamics of a cosmology dominated by a homogenous scalar field, with the intention of using it to model dark energy. We will begin with a brief discussion of the dynamics, followed by numerical computations for certain physically motivated testpotentials showing freezing and thawing effects, and conclude with a discussion on which combination of cosmological observables would be relevant to uncover the underlying physics of the scalar, leading us to argue that the number of interest will be $\frac{w^{\prime}}{1-w}$.

2 Basics of cosmological scalar fields

We start with the Lagrangian $\mathcal{L}_{Q}=-\frac{1}{2} Q_{, \mu} Q_{,}^{\mu}-V(Q)$ on an FRW metric background. The stress energy tensor is then given by

$$
\begin{aligned}
T_{\mu \nu} & =-Q_{, \mu} \frac{\partial \mathcal{L}_{Q}}{\partial Q_{, \nu}}+\eta_{\mu \nu} \mathcal{L}_{Q} \\
& =Q_{, \mu} Q_{, \nu}+\eta_{\mu \nu} \mathcal{L}_{Q}
\end{aligned}
$$

We see that if we define $\sqrt{\rho_{Q}+p_{Q}} u_{\mu}=Q_{, \mu}$ and $p_{Q}=\mathcal{L}_{Q}$, we see that this is just the stress energy tensor of a perfect fluid. Imposing $u^{\mu} u_{\mu}=1$ then gives us

$$
\begin{aligned}
p_{Q} & =-\frac{1}{2} Q_{, \mu} Q_{,}^{\mu}-V(Q) \\
\rho_{Q} & =Q_{,}^{\mu} Q_{, \mu}-p \\
& =-\frac{1}{2} Q_{, \mu} Q_{,}^{\mu}+V(Q)
\end{aligned}
$$

Imposing spatial homogeneity then gives us equation $\rho_{Q}=\frac{1}{2} \dot{Q}^{2}+V(Q)$ and $p_{Q}=\frac{1}{2} \dot{Q}^{2}-V(Q)$.
The equation of motion of the scalar field is given by

$$
\begin{aligned}
0 & =\nabla_{\mu} \frac{\partial \mathcal{L}_{Q}}{\partial Q_{, \mu}}-\frac{\partial L}{\partial Q} \\
& =-\nabla_{\mu} Q^{\mu}+V_{, Q} \\
& =-Q_{, \mu}^{\mu}-\Gamma_{\mu \lambda}^{\mu} Q_{,}^{\lambda}+V_{, Q}
\end{aligned}
$$

again imposing homogeneity and using the fact that $\Gamma_{j 0}^{i}=\delta_{j}^{i} H$ then gives us $\ddot{Q}+3 H \dot{Q}+V_{Q}=0$.

Starting with the density and equation of state we can go back to express the field variables as

$$
\begin{aligned}
V & =\frac{\rho-p}{2}=\frac{1}{2}(1-w) \rho \\
Q & =\int \mathrm{d} a \frac{\mathrm{~d} t}{\mathrm{~d} a} \frac{\mathrm{~d} Q}{\mathrm{~d} t} \\
& =\int \mathrm{d} a \frac{1}{a H} \sqrt{\rho+p} \\
& =\int \mathrm{d} a \frac{\sqrt{1+w}}{a H} \sqrt{\rho}
\end{aligned}
$$

3 Freezing and thawing

Given the equation of motion $\ddot{Q}+3 H \dot{Q}=-d V / d Q$, the field is inclined to minimize the potential V. The evolution of Q can be described by two models, thawing and freezing, which are determined by the morphology of $V(Q)$. If a minimal $V(Q)=0$ is accessible with a finite field Q, the potential that is initially deviated from the stationary point with $w_{0} \approx-1$ will start to thaw and roll down towards $w=0$ as the Hubble constant decays. In this case, w slowly increases and becomes less negative or equivalently the factor $w^{\prime}=\dot{w} / H=d w / d \ln a$ is positive. Since the decay of H limits the field acceleration, the equation of motion implies the upper constraints $w^{\prime}<3(1+w)$. There exist a lower bound of w^{\prime} too, considering the reality that the present universe is not completely dominated by Λ and the density parameter is $\Omega_{\Lambda} \simeq 0.7$. Several studies, such as pseudo Nambu-Goldstone boson (PNGB) and polynomial potential, suggest a lower limit $w^{\prime}>(1+w)$. One caveat is that these limits are valid for $w \leq-0.8$. Different from the thawing model, freezing model rises when the minimum of $V(Q)$ can not be achieved over a finite range of Q. The field in a freezing model gradually rolls down and decelerate so that $\dot{Q} \rightarrow 0$ and the equation-of-state parameter $w=\left(\frac{1}{2} \dot{Q}^{2}-V\right) /\left(\frac{1}{2} \dot{Q}^{2}+V\right) \rightarrow-1$. The steepness of the potential limits the deceleration of the field, say $\ddot{Q}>d V / d Q$, which leads to $w^{\prime}>3 w(1+w)$. As for the the upper limit, an empirical bound $w^{\prime} \leq 0.2 w(1+w)$ is given by predictions of various models. Moreover, this limit is not definite and is applicable only for $w \leq 0.8$.

Now, we attempt to derive equations governing the evolution of w and further reproduce the figures in the $w-w^{\prime}$ phase space. Using the definition of w and w^{\prime}, we have

$$
w^{\prime}=\frac{1}{H} \frac{d w}{d t}=\frac{d w}{d \ln a}=\frac{1}{H} \frac{2 V \dot{Q} \ddot{Q}-V_{Q} \dot{Q}^{3}}{\left(\frac{1}{2} \dot{Q}^{2}+V\right)^{2}} .
$$

Recalling $\ddot{Q}=-3 H \dot{Q}-V_{Q}, \rho_{\Lambda}(1+w)=\dot{Q}^{2}$ and $2 V=\rho_{\Lambda}(1-w)$, we eliminate \ddot{Q}, \dot{Q} in the equation and finally obtain

$$
\begin{align*}
w^{\prime}=\frac{d w}{d \ln a} & =-3\left(1-w^{2}\right)-\frac{d V}{d Q} \frac{1}{V}(1-w) \sqrt{\frac{\rho_{\Lambda}}{H^{2}}(1+w)} \\
& =-3\left(1-w^{2}\right)-\frac{d V}{d Q} \frac{M_{p}}{V}(1-w) \sqrt{\frac{3}{8 \pi} \Omega_{\Lambda}(1+w)} \tag{1}\\
& =(w-1)\left[3(1+w)-\lambda \sqrt{3(1+w) \Omega_{\Lambda}}\right]
\end{align*}
$$

where $\Omega_{\Lambda}=\rho_{\Lambda} / \rho_{c r}, \lambda=-\sqrt{\frac{1}{8 \pi}} \frac{d V}{d Q} \frac{M_{p}}{V}$, the Planck mass $M_{p}=1 / \sqrt{G}$. In our calculation, we assume Ω_{Λ} and Λ are time-dependent (or a-dependent). The equations describing λ and Ω_{Λ} are

$$
\begin{align*}
\frac{d \Omega_{\Lambda}}{d \ln a} & =-3\left(w-w_{m}\right) \Omega_{\Lambda}\left(1-\Omega_{\Lambda}\right) \tag{2}\\
\frac{d \lambda}{d \ln a} & =-\sqrt{3(1+w) \Omega_{\Lambda}}(\Gamma-1) / \lambda^{2}
\end{align*}
$$

where $\Gamma=V V_{, Q Q} / V_{, Q}^{2}$ and $w_{m}=0$ and $1 / 3$ correspond to current universe and radiation-dominated epoch respectively.

Figure 1: The evolution of w in $w-w^{\prime}$ phase space. Black solid lines are the boundaries for thawing and freezing models. The vertical black line shows the maximal w that the boundary functions, e.g. $3 w(1+w)$, are valid. Models in the present universe ($\Omega_{\Lambda}=0.7, w_{m}=0$) and radiation-dominated universe ($\Omega_{\Lambda}=0.01, w_{m}=1 / 3$) are illustrated by dashed and dot-dashed lines. Different colors correspond to the index $p=1,2,4$ in the potential $V=M^{4+p} Q^{-p}$.

To find the fixed point of w, let $w^{\prime}=0$ and we get

$$
\begin{equation*}
\Omega_{\Lambda}=3(1+w) / \lambda^{2} \tag{3}
\end{equation*}
$$

and further $\Omega_{\Lambda}^{\prime}=-2 \times(1+w) \lambda^{\prime} / \lambda^{3}$ or equivalently $\Omega_{\Lambda}^{\prime} / \Omega_{\Lambda}=-2 \lambda^{\prime} / \lambda$, where ${ }^{\prime}$ denotes the derivative with respect to $\ln a$. Applying equations 2 , we obtain

$$
\begin{equation*}
-3\left(w-w_{m}\right)\left(1-\Omega_{\Lambda}\right)=2 \sqrt{3(1+w) \Omega_{\Lambda}}(\Gamma-1) \lambda . \tag{4}
\end{equation*}
$$

In the current universe, we set the initial conditions $\Omega_{\Lambda}\left(a_{0}\right)=0.7$ and $w_{m}=0$ and solve $\lambda\left(a_{0}\right), w\left(a_{0}\right)$ from Eqs 3 and 4 in the tracking freezing models, $V=M^{4+p} Q^{-p}(p=1,2,4)$. In this case $\Gamma=$ $1+1 / p>1$ and the initial conditions are: $\left(p=1, w\left(a_{0}\right)=-0.69, \lambda\left(a_{0}\right)=1.15\right),\left(p=2, w\left(a_{0}\right)=\right.$ $\left.-0.52, \lambda\left(a_{0}\right)=1.43\right),\left(p=4, w\left(a_{0}\right)=-0.36, \lambda\left(a_{0}\right)=1.66\right)$. For the early universe that is dominated by radiation, we assume $\Omega_{\Lambda}\left(a_{0}\right) \approx 0.01$ as a fiducial value and $w_{m}=1 / 3$. The initial conditions become: $\left(p=1, w\left(a_{0}\right)=-0.56, \lambda\left(a_{0}\right)=11.49\right),\left(p=2, w\left(a_{0}\right)=-0.34, \lambda\left(a_{0}\right)=14.07\right),\left(p=4, w\left(a_{0}\right)=\right.$ $\left.-0.11, \lambda\left(a_{0}\right)=16.34\right)$. Using these parameters, we show the $w^{\prime}-w$ relation, the evolutions of $w(a)$ and $\Omega_{\Lambda}(a)$ in Figs. 1 and 2, respectively.

Figure 2: The evolutions of $\Omega_{\Lambda}(a)$ (left panel) and $w(a)$ (right panel) in a freezing model with the potential $V=M^{4+p} Q^{-p}(p=1,2,4)$. Red, blue and greed lines correspond to $p=1,2,4$, while dashed and solid lines are calculated in the present universe $\left(\Omega_{\Lambda}=0.7, w_{m}=0\right)$ and radiation-dominated universe $\left(\Omega_{\Lambda}=0.01, w_{m}=1 / 3\right)$, respectively.

4 Massive Quintessence

Assume $V(Q)=\frac{1}{2} M^{2} Q^{2}$, then we have

$$
\lambda=\sqrt{\frac{1}{8 \pi}} M_{p l} \frac{2}{Q}=\sqrt{\frac{1}{\pi}} \frac{M_{p l} M}{\sqrt{2 V}}
$$

Using $V=\frac{1-w}{2} \Omega \rho_{c}, \rho_{c}=\frac{\rho_{m}}{\Omega_{m}}, 1=\Omega+\Omega_{m}$ and $\rho_{m}=\frac{\rho_{m, 0}}{a^{3\left(1+w_{m}\right)}}$. Combining this gives

$$
\lambda=\sqrt{\frac{1}{\pi}} \frac{M_{p l} M}{\sqrt{\rho_{m, 0}}} \sqrt{\frac{\frac{1}{\Omega}-1}{1-w}} e^{\frac{3}{2}\left(1+w_{m}\right) \log (a)}
$$

From a given w and w^{\prime} we can directly calculate M. Assuming that $1-w$ is small, we find

$$
M=\frac{\sqrt{\pi} w^{\prime}}{(1-w) \sqrt{1-\Omega}} \frac{\sqrt{\rho_{m, 0}}}{M_{p l}} \approx 10^{-32} \frac{w^{\prime}}{1-w} \frac{\mathrm{eV}}{c^{2}}
$$

Which means that either $1-w$ is increadibly small or the quintessence mass introduces a new hierarchy problem in physics. In fact, we quickly see that $\frac{V}{V^{\prime}}$ has to be of order Planck mass, resulting in extremely flat potentials. This term will be proportional to $\frac{w^{\prime}}{1-w}$ so a interesting measure of quality might be $\frac{1}{\sigma\left(\frac{w^{\prime}}{1-w}\right)}$, which can be made explicit as $\frac{(1-w)^{2}}{\sqrt{\sigma\left(w^{\prime}\right)^{2}(1-w)^{2}+w^{\prime 2} \sigma(w)^{2}}}$.

Combining the expression for λ in this section and the equations for w, Ω_{Λ}, we obtain the evolution of $w(a)$ and the track in $w-w^{\prime}$ space, as shown in Fig. 3. Here, we introduce one mass parameter $j=\frac{M M_{p}}{\pi \sqrt{\rho_{m, 0}}}$ and it is in the order of unity (see the left panel of Fig. 3). A relatively higher M is favored to accelerate the growth of w and to reach the upper limit of w^{\prime} (see the right panel).

5 Constraints on w and $w_{a}\left(w^{\prime}\right)$

If we know the values of w_{0} and w^{\prime} or w_{a}, the equation of state in a flat universe can be written as

$$
p / \rho \simeq w_{0}+w_{a}\left(a-a_{0}\right)=w_{0}+w_{a} \frac{z}{1+z}
$$

Combining the equation of state with the Friedmann equation, we obtain

$$
\begin{equation*}
H^{2}=H_{0}^{2}\left[\Omega_{m}(1+z)^{3}+\Omega_{\Lambda}^{3(1+w)}\right] \tag{5}
\end{equation*}
$$

Parameters in this model are linked to observations through angular-diameter and/or luminosity distances. In practice, supernovae, gamma-ray bursts (GRBs) and gravitational lensing systems are used to constrain w_{0} and w_{a}. Huterer and Peiris (2007) showed the constraints of $w_{0}-w_{a}$

Figure 3: Evolution of $w(a)$ (left) and the track in $w-w^{\prime}$ space (right) under $V=\frac{1}{2} M^{2} Q^{2}$. In this calculation we assume $\Omega_{\Lambda}\left(a_{0}\right)=0.7, w\left(a_{0}\right)=0.99$.

