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1 Introduction

In this summary we will briefly talk about the dynamics of a cosmology dominated by a homogenous
scalar field, with the intention of using it to model dark energy. We will begin with a brief discussion
of the dynamics, followed by numerical computations for certain physically motivated testpotentials
showing freezing and thawing effects, and conclude with a discussion on which combination of cos-
mological observables would be relevant to uncover the underlying physics of the scalar, leading us to
argue that the number of interest will be w′

1−w .

2 Basics of cosmological scalar fields

We start with the Lagrangian LQ = −1
2Q,µQ

µ
, − V (Q) on an FRW metric background. The stress

energy tensor is then given by

Tµν = −Q,µ
∂LQ
∂Q,ν

+ ηµνLQ

= Q,µQ,ν + ηµνLQ

We see that if we define
√
ρQ + pQuµ = Q,µ and pQ = LQ, we see that this is just the stress energy

tensor of a perfect fluid. Imposing uµuµ = 1 then gives us

pQ = −1

2
Q,µQ

µ
, − V (Q)

ρQ = Qµ, Q,µ − p

= −1

2
Q,µQ

µ
, + V (Q)

Imposing spatial homogeneity then gives us equation ρQ = 1
2Q̇

2 + V (Q) and pQ = 1
2Q̇

2 − V (Q).

The equation of motion of the scalar field is given by

0 = ∇µ
∂LQ
∂Q,µ

− ∂L

∂Q

= −∇µQµ, + V,Q

= −Qµ,µ − ΓµµλQ
λ
, + V,Q

again imposing homogeneity and using the fact that Γij0 = δijH then gives us Q̈+ 3HQ̇+ V,Q = 0.
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Starting with the density and equation of state we can go back to express the field variables as

V =
ρ− p

2
=

1

2
(1− w)ρ

Q =

∫
da

dt

da

dQ

dt

=

∫
da

1

aH

√
ρ+ p

=

∫
da

√
1 + w

aH

√
ρ

3 Freezing and thawing

Given the equation of motion Q̈ + 3HQ̇ = −dV/dQ, the field is inclined to minimize the potential
V . The evolution of Q can be described by two models, thawing and freezing, which are determined
by the morphology of V (Q). If a minimal V (Q) = 0 is accessible with a finite field Q, the potential
that is initially deviated from the stationary point with w0 ≈ −1 will start to thaw and roll down
towards w = 0 as the Hubble constant decays. In this case, w slowly increases and becomes less
negative or equivalently the factor w′ = ẇ/H = dw/d ln a is positive. Since the decay of H limits the
field acceleration, the equation of motion implies the upper constraints w′ < 3(1 + w). There exist a
lower bound of w′ too, considering the reality that the present universe is not completely dominated
by Λ and the density parameter is ΩΛ ' 0.7. Several studies, such as pseudo Nambu-Goldstone boson
(PNGB) and polynomial potential, suggest a lower limit w′ > (1 +w). One caveat is that these limits
are valid for w ≤ −0.8. Different from the thawing model, freezing model rises when the minimum of
V (Q) can not be achieved over a finite range of Q. The field in a freezing model gradually rolls down
and decelerate so that Q̇→ 0 and the equation-of-state parameter w = (1

2Q̇
2 − V )/(1

2Q̇
2 + V )→ −1.

The steepness of the potential limits the deceleration of the field, say Q̈ > dV/dQ, which leads to
w′ > 3w(1+w). As for the the upper limit, an empirical bound w′ ≤ 0.2w(1+w) is given by predictions
of various models. Moreover, this limit is not definite and is applicable only for w ≤ 0.8.

Now, we attempt to derive equations governing the evolution of w and further reproduce the figures
in the w − w′ phase space. Using the definition of w and w′, we have

w′ =
1

H

dw

dt
=

dw

d ln a
=

1

H

2V Q̇Q̈− V,QQ̇3

(1
2Q̇

2 + V )2
.

Recalling Q̈ = −3HQ̇− V,Q, ρΛ(1 +w) = Q̇2 and 2V = ρΛ(1−w), we eliminate Q̈, Q̇ in the equation
and finally obtain

w′ =
dw

d ln a
= −3(1− w2)− dV

dQ

1

V
(1− w)

√
ρΛ

H2
(1 + w)

= −3(1− w2)− dV

dQ

Mp

V
(1− w)

√
3

8π
ΩΛ(1 + w)

= (w − 1)[3(1 + w)− λ
√

3(1 + w)ΩΛ]

(1)

where ΩΛ = ρΛ/ρcr, λ = −
√

1
8π

dV
dQ

Mp

V , the Planck mass Mp = 1/
√
G. In our calculation, we assume

ΩΛ and Λ are time-dependent (or a-dependent). The equations describing λ and ΩΛ are

dΩΛ

d ln a
= −3(w − wm)ΩΛ(1− ΩΛ)

dλ

d ln a
= −

√
3(1 + w)ΩΛ(Γ− 1)/λ2

(2)

where Γ = V V,QQ/V
2
,Q and wm = 0 and 1/3 correspond to current universe and radiation-dominated

epoch respectively.
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Figure 1: The evolution of w in w − w′ phase space. Black solid lines are the boundaries for thawing
and freezing models. The vertical black line shows the maximal w that the boundary functions, e.g.
3w(1 + w), are valid. Models in the present universe (ΩΛ = 0.7, wm = 0) and radiation-dominated
universe (ΩΛ = 0.01, wm = 1/3) are illustrated by dashed and dot-dashed lines. Different colors
correspond to the index p = 1, 2, 4 in the potential V = M4+pQ−p.

To find the fixed point of w, let w′ = 0 and we get

ΩΛ = 3(1 + w)/λ2 (3)

and further Ω′Λ = −2× (1 +w)λ′/λ3 or equivalently Ω′Λ/ΩΛ = −2λ′/λ, where ′ denotes the derivative
with respect to ln a. Applying equations 2, we obtain

−3(w − wm)(1− ΩΛ) = 2
√

3(1 + w)ΩΛ(Γ− 1)λ. (4)

In the current universe, we set the initial conditions ΩΛ(a0) = 0.7 and wm = 0 and solve λ(a0), w(a0)
from Eqs 3 and 4 in the tracking freezing models, V = M4+pQ−p (p = 1, 2, 4). In this case Γ =
1 + 1/p > 1 and the initial conditions are: (p = 1, w(a0) = −0.69, λ(a0) = 1.15), (p = 2, w(a0) =
−0.52, λ(a0) = 1.43), (p = 4, w(a0) = −0.36, λ(a0) = 1.66). For the early universe that is dominated by
radiation, we assume ΩΛ(a0) ≈ 0.01 as a fiducial value and wm = 1/3. The initial conditions become:
(p = 1, w(a0) = −0.56, λ(a0) = 11.49), (p = 2, w(a0) = −0.34, λ(a0) = 14.07), (p = 4, w(a0) =
−0.11, λ(a0) = 16.34). Using these parameters, we show the w′ − w relation, the evolutions of w(a)
and ΩΛ(a) in Figs. 1 and 2, respectively.
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Figure 2: The evolutions of ΩΛ(a) (left panel) and w(a) (right panel) in a freezing model with the
potential V = M4+pQ−p (p = 1, 2, 4). Red, blue and greed lines correspond to p = 1, 2, 4, while dashed
and solid lines are calculated in the present universe (ΩΛ = 0.7, wm = 0) and radiation-dominated
universe (ΩΛ = 0.01, wm = 1/3), respectively.

4 Massive Quintessence

Assume V (Q) = 1
2M

2Q2, then we have

λ =

√
1

8π
Mpl

2

Q
=

√
1

π

MplM√
2V

Using V = 1−w
2 Ωρc, ρc = ρm

Ωm
, 1 = Ω + Ωm and ρm =

ρm,0

a3(1+wm) . Combining this gives

λ =

√
1

π

MplM√
ρm,0

√
1
Ω − 1

1− w
e

3
2

(1+wm) log(a)

From a given w and w′ we can directly calculate M . Assuming that 1− w is small, we find

M =

√
πw′

(1− w)
√

1− Ω

√
ρm,0

Mpl
≈ 10−32 w′

1− w
eV

c2

Which means that either 1−w is increadibly small or the quintessence mass introduces a new hierarchy
problem in physics. In fact, we quickly see that V

V ′ has to be of order Planck mass, resulting in

extremely flat potentials.This term will be proportional to w′

1−w so a interesting measure of quality

might be 1

σ( w′
1−w

)
, which can be made explicit as (1−w)2√

σ(w′)2(1−w)2+w′2σ(w)2
.

Combining the expression for λ in this section and the equations for w, ΩΛ, we obtain the evolution
of w(a) and the track in w − w′ space, as shown in Fig. 3. Here, we introduce one mass parameter

j =
MMp

π
√
ρm,0

and it is in the order of unity (see the left panel of Fig. 3). A relatively higher M is

favored to accelerate the growth of w and to reach the upper limit of w′ (see the right panel).

5 Constraints on w and wa(w
′)

If we know the values of w0 and w′ or wa, the equation of state in a flat universe can be written as

p/ρ ' w0 + wa(a− a0) = w0 + wa
z

1 + z
.

Combining the equation of state with the Friedmann equation, we obtain

H2 = H2
0 [Ωm(1 + z)3 + Ω

3(1+w)
Λ ]. (5)

Parameters in this model are linked to observations through angular-diameter and/or luminosity
distances. In practice, supernovae, gamma-ray bursts (GRBs) and gravitational lensing systems are
used to constrain w0 and wa. Huterer and Peiris (2007) showed the constraints of w0 − wa
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Figure 3: Evolution of w(a) (left) and the track in w − w′ space (right) under V = 1
2M

2Q2. In this
calculation we assume ΩΛ(a0) = 0.7, w(a0) = 0.99.

5


