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We present our measurements of mean speed and lifetime of cosmic-ray muons and show that
muons are relativistic particles where classical mechanics based on Newton’s laws are invalid. In
particle physics, the decay time of muons can be exactly calculated using Fermi weak coupling
constant GF and rest mass, which enables us to link the lifetime given by experiment and the
theory for weak interactions. In our work, we use scintillation detectors to record the pulses and use
coincidence-analysis system to digitalize the time intervals. The average speed of muons is measured
to be 1.58 × 108m/s (52.7% of light speed). The reasons of failure towards the speed and lifetime
measurements are discussed. We also employ Monte Carlo simulations to discuss the broadening
effect due to the momentum distribution of sea level muons. Since the atmospherical muons and
their neutrinos play an important role in ground-based cosmic ray detectors, our methods can also
be applied to construct the muon’s track and energy loss inside these detectors and further the
direction and energy of the incident astronomical particles can be inferred.

I. INTRODUCTION

I. 1 Cosmic Rays

Our Earth is immersed in the environment full of ra-
diations and energetic particles, such as protons, alpha
particles and neutrinos. The latter, named cosmic rays,
are produced in the most violent astronomical processes
inside or outside the Milky Way, according to contem-
porary observations and theories. Starforming and star-
burst galaxies which have a high occurrence rate of su-
pernovae are the most promising sources and cosmic rays
can be accelerated to 1021eV through Fermi (shock) ac-
celeration mechanism in supernova explosions[1]. Cos-
mic rays generated in the sources are called primary cos-
mic rays, of which protons dominate the particle species
(≈ 85%) followed by α particles (≈ 12%) and heavier nu-
clei (Z ≥ 3,≈ 3%)[2]. During the propagation of charged
particles before reaching the Earth, they are often influ-
enced by the interstellar magnetic, as a consequence their
trajectories are unpredictability distorted and the direc-
tional information is lost. This effect also leads to the
isotropy of cosmic rays which enables cosmic rays to be
a free and ideal source for particle experiments. How-
ever, when compared to the earlier prosperity of optical
astronomy (in 17th century), it is generally believed that
particle astrophysics was born with a remarkable finding
about one century ago.

In 1912, Victor Hess sent a modified elertrometer into
the atmosphere along with a balloon to detect the ioniza-
tion rate[3]. Before him, people believed the ionization
and charged particles in the air came from radiative
materials underground. If this projection is authentic,
ionization should decrease with the height above the
sea level. However, Hess’ result was a dramatic surprise
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because he found ionization at latitude 5300m increased
approximately four times than sea level. In fact, when
primary cosmic rays try to penetrate the atmosphere,
they collide with atoms in the air and generate a particle
cascade, called ”air shower”. Particles generated in this
process are called secondary cosmic rays and the species
are dramatically increased: pions, muons, kaons and
their corresponding neutrinos, are produced. The lepton
decay of pions and kaons produces relatively stable
muons through these channels:

π+ → µ+ + νµ; π− → µ+ + ν̄µ

and

K+ → µ+ + νµ; K− → µ+ + ν̄µ.

In consequence, at sea level, almost 80% of secondary
particles are muons. Accurate measurement of muon
spectrum at sea level by Rastin (1984) gives the mo-
mentum spectrum that is illustrated in Figure 1. In our
experiment, we will discuss the broadening effect con-
tributed by the distribution of muons’ momentum.

I. 2 Special Relativity

From the momentum spectrum, we can estimate the
average momentum, which is 0.5GeV/c. In classical me-
chanics, the velocity is given by v = p/mµ ≈ 4.76c, here
we take mµ = mµ,0 = 0.105MeV/c2. However, accord-
ing to the special theory of relativity, the upper limit of
speed is c, which implies that the relativistic effect can-
not be ignored in this analysis. In relativistic mechanics,
we have the relation between the speed and momentum

p =
m0v√
1− v2

c2

, (1)
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FIG. 1. The differential (in cm−2 sr−1 s−1 (GrV/c)−1) mo-
mentum distribution of sea level muons[4] in vertical direc-
tion.

then we can solve the mean speed of muons in the unit of
light speed vµ = pc/

√
m2

0c
2 + p2 ≈ 0.979c. Because most

of the muons are produced in the top of atmosphere (≈
15km), time required to arrive the earth would be at least
15km/c ≈ 50µs which is much larger than the accepted
muon lifetime 2.197µs[5]. To explain this phenomen, we
introduce the Lorentz transformation between two frames
of reference (see appendix A). For a muon located at the

original point in S
′
, the proper time interval in S would

be

∆t
′

= γ∆t. (2)

This is the relativistic dilation of time. Using E = γm0c
2,

we can find the relation between energy and distance be-
fore decaying

L = τc

√(
E

m0c2

)2

− 1, (3)

From this equation, muons with energy larger than
2.39GeV can travel 15 km before decaying to other par-
ticles.

I. 3 Lifetime of Muons

As the first unstable particle found by human[6], muon
and its anti-particle, µ+, can decay through the following
channels producing electrons/positrons and correspond-

FIG. 2. Feynman diagram for µ− decay that is mediated by
the W boson: the muon decays to an electron, an electron an-
tineutrino, and a muon neutrino. The positive time direction
is rightward.

ing neutrinos:

µ− → e− + ν̄e + νµ; µ+ → e+ + νe + ν̄µ

The Feynman diagrams this process can be found in fig-
ure 2,

The decaying process can be described by the lifetime
τ such that

I(t) = I(0)e−t/τ , (4)

where I(0) and I(t) are the number of muons at initial
time and a duration t after that. According to Fermi’s
weak-decay theory, the lifetime τ of muons can be calcu-
lated directly using some basic parameters[7],

1

Γ(µ− → e−ν̄eνµ)
= τ =

192π3

G2
Fm

5
µ

, (5)

where GF is called Fermi decay constant which is related
to the weak coupling strength (gW ) and W-Boson mass
(mW ) through

GF =

√
2g2
W

8m2
W

. (6)

Thus a precise measurement of muon lifetime can be used
to determine the Fermi constant. If GF is known, we can
find the value of gw usingmW = 80.385±0.015GeV/c2[8].

One thing concerning the lifetime would be the ra-
tio of muons and anti-muons at sea level. The muons
generated in particle cascade inherit the property of
their progenitors that are positively charged. This ra-
tio N(µ+)/N(µ−) = 1.25 can be roughly estimated from
two reaction channels of cosmic-ray photons in the at-
mosphere. At sea level this parameter is measured by
Burnett et al.(1973) and their result is 1.261 ± 0.009[9].
Thus the intensity of muons can be decomposed to two
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parts,

I(t) =
N(µ−)

N(µ−) +N(µ+)
I0e
−t/τ− +

N(µ+)

N(µ−) +N(µ+)
I0e
−t/τ+

= 0.44I0e
−t/τ− + 0.56I0e

−t/τ+ .

(7)

Considering the muon captures, τ− is lightly smaller
than τ+. In this experiment, we measured the mean
lifetime of muons.

Above all, the measurements of mean speed and life-
time of cosmic muons has deeply strengthened our un-
derstanding of relativistic effects for high speed particles
and the nature of weak interactions. In this paper, we
also tried to elucidate these profound and far-sighted the-
ories through our experiment. This paper is arranged as
follows: section two is mainly about the methodology, we
will introduce the principles used to measure the speed
and lifetime of muons as well as the equipments in our
experiment. A brief introduction to Monte Carlo simula-
tions of event-collection efficiency is also included in this
section. We present our results and discussions in section
three. Conclusions can be found in section four.

II. METHODS AND EQUIPMENT

II. 1 Mean Speed of Muons

II. 1. 1 Principles

The basic idea of measuring the mean speed of muons
is straight forward: speed is the distance divided by the
time cost to travel. The sketch of our equipment is shown
in Fig 8 in appendix B. In our experiment, we used two
“paddles” of Bicron BC-408 scintillator deployed on a
vertical frame as the detector of muons. When muons
hit the photomultiplier tubes (PMT) inside the paddles,
one pulse will be triggered. If one muon penetrates both
the upper and bottom paddles (we call it an event or
a count), the time difference between two pulses should
be the duration of the trip between the paddles. The
distance is adjustable, which enables us to measure the
time differences of different separations. After the pulses
are generated, they are sent to the coincidence-analysis
system. Details pertaining the setup in this system can
be found in appendix B. One vital procedure would be
the calibration: find the transformation function from
channels to time differences. We will leave the calibration
to the end of this section.

When we receive the signal from MCA, the time dif-
ference ∆t is known. In this experiment,

∆t =
d

vµ
+ t0 (8)

where d is the distance between two paddles and t0 is
the time delay in the cable. In other words, d = (∆t −
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FIG. 3. Counting rate as a function of high voltages for both
PMTs. The inflection point is about 1.15kV.

t0)vµ means the speed is the slope in d−∆t figures and
the measurement of t0 is not required (in fact, we can
determine t0 from the intercept of d−axis).

In order to optimize the parameters of these devices, an
estimate of event rate for different d is very useful. One
conventional assumption about the spatial distribution of
muons is that intensity only depends on the zenith angle
θ and is isotropic in azimuthal direction (φ in spherical
coordinates). The total muon intensity at sea level varies
like

I(θ) = I0 cos2(θ) (9)

where I0 = 0.83 × 10−2cm2 s−1 sr−1 is the normalized
coefficient[10]. For a horizontally placed plate, the total
collection rate is

dN

dt
=

∫
I0 cos2(θ)dAdΩ =

2π

3
AI0, (10)

where A is the area of the plate. In this experiment, the
dimension of PMT paddles is 31.50cm × 31.50cm, thus
the arrival rate of muons is approximately 17 s−1. To es-
timate the counting rate (depends on d), we ran a Monte
Carlo simulation (details can be found in appendix C).
From this simulations, we found the time increases lin-
early with the slant range. This result is quite reasonable
because when d increases, the solid angle decrease as well
as the efficiency which is evaluated by counts/N .

II. 1. 2 Calibration

One vital step is to find the converting function be-
tween channels from MCA and time differences. Before
that, we used the Timer and Counter to find the optimal
voltages for PMT by recording the counting rate as a
function of voltage when two paddles are overlapping[11].
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FIG. 4. Setting for calibration. The pulse generator is used as
the source of input signals. The time differences are generated
by varying the length cables. To check the time difference, we
fed the signals from two separated cables to Input 1 and Input
2 in the oscilloscope. The corresponding bin number can be
obtained from Genie 2000 after digitalized by MCA.

Our data is shown in figure 3. The best voltage would
be 1.15kV (inflection point in this figure) for both upper
and bottom PMTs to minimize the spurious signals.

The connection and setup for calibration are shown in
figure 4. In this step we need to use a pulse generator
as the signal source and an oscilloscope to check the fre-
quency and period of inputs. Here we consider the time
delay in BNC cables and use the combination of cables,
for example 30′, , 50′, 80′, 100′ and 130′, to get different
time differences. For each group, the time difference can
be read in the oscilloscope and the channel (bin) number
can be obtained from Genie 2000. Thus, we established
the correlation between the bin numbers and time differ-
ences (please refer to the FIG 5). Using linear function
to fit these points, we obtain the convert function from
bins to time differences:

t = 0.0120 ns× (bins + 375.51), (11)

which is then applied to calculate the speed of muons.
In this step, the oscilloscope should be externally ter-
minated into 50 ohms. The key reason is that 50 ohms
terminal level is enough to minimize the effect on the
pulse generator.

II. 2 Mean Lifetime of Muons

In this experiment, we used a 55-gallon drum of liquid
scintillator to collect muons.The setting can be found in
figure 6. According to Bethe-Bloch equation[12], when
muons are traveling through a medium, they will lose
their energy until getting rest. The radiation in this pro-
cess is detectable. Because the energy-loss time is in mag-
nitude of several ns which is much shorter than the life-
time of muons, we can assume the muon is at rest when
they emit the stopping signal. Shortly, the muon will
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FIG. 5. The relationship between channel (or bin) numbers
and time differences. We use the combination of cables to get
the time differences. From left to right, the corresponding ca-
ble lengths are 30′, , 50′, 80′, 100′ and 130′ respectively. The
slope and intercept of linear-fitting function are 83.17 ns−1

and −375.51.

FIG. 6. Setting for lifetime measurement. Here, we use one
PMT to generate both pulses and we use a long delay cable
to avoid trigging the START and STOP simultaneously. In
this circuit, the voltage on PMT is 1.1kV.

decay and generate a relativistic electron whose speed
exceeds the light speed in the medium.

The PMT will detect the Cherenkov radiation from the
electron. The time difference between these two pulses
∆t in related to the intensity, I0e

−∆t/τ . So we can extract
the τ from the distribution of ∆t. However, we cannot get
a perfect exponential decay function in realistic experi-
ment mainly for two reasons. The first one is timedelay in
the cable t0, so the real time difference between stopping
and decaying is ∆tm− t0, where tm is the measured time
difference. This effect can be considered as a modifica-
tion to the coefficient I0, say I(∆tm) = I0e

t0/τe−∆tm/τ .
Another contribution is attributed to accidental delayed
coincidences between random pulses which contribute a
uniform background to the counts. As a consequence,
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the distribution of ∆tm dumps exponentially at first and
then maintain a constant. Therefore, the final distribu-
tion is

I(∆tm) = I0e
t0/τe−∆tm/τ + b. (12)

One crucial step in this measurement is choosing the
appropriate range on the TAC and threshold on the CFD.
In our experiment, they are 100ns × 100 and 0.5 respec-
tively. If the threshold is too low, the rate of acciden-
tial coincidences is so high that the real events are over-
whelmed by the noise, or, most of the decaying events
are rejected.

III. RESULTS AND DISCUSSION

III. 1 Measurement of Mean Speed of Muons

To measure the speed of muons, we adjusted the ver-
tical position of paddles to get six different separations:
20 cm, 50 cm, 84 cm, 95 cm, 151 cm and 190 cm. The
distributions of count for different separations were fit-
ted by Gaussian function (see appendix D). Using the
previous convert function (equation 11), we got the rela-
tion between the separations di and time differences ∆ti.
From Equation 8, we found the speed of muons is the
slope of the linear function in ∆t− d plane (as shown in
FIG 7). The average speed obtained from least square
method is 1.583±0.011×108m s−1. This value is 52.77%
of the speed of light which indicates that the upper limit
on the relative speed of inertial frames holds. However,
our result of muons’ speed is much lower than reported
results (about 99% c)[13][14].

This discrepancy mainly came from the malfunction of
our apparatus instead of the low speed of muons. In fact,
we double-checked our setups and procedures for several
times and we came to the conclusion that the TAC is mal-
functioning. The evidences are presented as follows. The
CFD is designed to mimic the mathematical operation of
finding a maximum of a pulse which converts the pulses
from PMT to processable inputs for TAC. Since the dis-
tributions of events are correct (see FIG 11 to FIG 16)
and correlation between d and ∆t is a well-define linear
function, we concluded that the CFDs worked well. How-
ever, the internal failure of TAC will produce the false
time-to-amplitude signal. At the beginning, we tried to
calibrate through changing the period of pulse generator,
but the bins we got on Genie 2000 are random. There-
fore, it is more possible that there is something wrong
with TAC which causes the incorrectness of calibration.

If the TAC is not faulty, we are expected to get a
lower time-per-bin value. In our calibration, each bin
represents t0 ≈ 0.012ns instead of t0 ≈ 0.007ns as found
in the manual. Using the correct value, the speed is
2.71×108m/s (90% c) which is very close to the speed of
light. If a speed of 99% c is measured, the Lorentz factor
would be γ = 1/

√
1− (v/c)2 ≈ 7.1. Therefore, the time
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FIG. 7. separations v.s. time differences. The speed of muons,
1.583×108m s−1, is estimated using least square method (blue
solid line) with the relative standard error to be 0.7%.

that muons can travel in laboratory frame is tL = γτ
where τ is the mean life time and the energy can be up
to the magnitude of giga-electron volts. On the other
hand, the detectability of atmospherical muons indicates
their speed is very close to c.

III. 2 The Failed Muon Lifetime Measurement

Eventually, we failed to measure the mean life time of
muons because of the faulty apparatus. In our experi-
ment, the TAC is possibly malfunctioning. The reason is
that the basic principles of calibration and measurement
of life time are very analogous and the success of this ex-
periment relies highly on TAC to convert the time differ-
ence from CFD to amplitude. If the STOP and START
signals are not separated correctly, we cannot get any
meaningful results from Genie 2000 except white noise.
Since we can get some useful patterns in the speed mea-
surement, for instance, the linear relation between d and
∆t (see FIG 7) and the Gaussian distributions of events
(see FIG 11 to FIG 16), it is reasonable to conclude that
CFDs and MCA are working regularly and it is the TAC
where the problem exists.

If the apparatus are working well, we are expected
to get a distribution of time differences with an expo-
nentially decreasing feature as described in equation 12.
Then, using the function

counts = A× exp

(
− t
τ

)
+B (13)

to fit this distribution, we can get the mean lifetime τ
(here A and B are constants). The widely accepted value
from modern measurement is τ ≈ 2.197 µs[15]. The
proper time interval of the frame in which muons are
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at rest is given by ∆t = s/(γv), where s is the distance
the muons travel. With this time, the survival rate of
muons is

P (s)

P (0)
= exp

(
− L

γvτ

)
. (14)

Substituting γ = 7.1, τ = 2.197µs, v = 0.99c and
s = 15km into this equation, we obtain the survival prob-
ability at sea level is ≈ 4.1%. Consider a tremendous
number of muons are generated in the atmosphere, the
incident rate at sea level is still observable.

IV. CONCLUSIONS

In this experiment, we attempted to measure the speed
and lifetime of sea-level muons using our PMTs and
coincidence-analysis system. Because of the faulty ap-
paratus, we cannot get correct values. Despite of that,
we provided the valid methods to calibrate and to mea-
sure the speed and lifetime. We proved that we must
consider the relativistic dilation when studying the prop-
agation of muons and that muons are observable at sea
level by calculating the survival probability. Moreover,

using τ = 2.197µm, we estimated the weak coupling con-
stant to be GF ≈ 1.167×10−5GeV−2, which is consistent
with[8].

After carefully checking each part of the apparatus,
we concluded there are some problems with TAC. If ev-
erything went as expected, the speed of muons can be
measured up to 99% of light speed that reveals an upper
limit of speed, which is one of the fundamental assump-
tions of special relativity. In addition, as we can find
from our calculations, the Classical Mechanics is invalid
in high-speed situations where relativistic theory governs
the motions.
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Appendix A: Lorentz transformation

The transformation from two inertial frames, say S (in

which muons are at rest) and S
′

(laboratory frame), is
given by

x
′

y
′

z
′

ict
′

 =

 γ 0 0 iβγ
0 1 0 0
0 0 1 0
−iβγ 0 0 γ


 x

y
z
ict

 , (A1)

where β = v/c, γ = 1/(1−β2)1/2 and v is speed of S
′

in
S.

Appendix B: Setup for speed measurement

After the pulses are generated in PMTs, they are
sent to the Constant-Fraction-Discriminator (CFD) sep-
arately. If the input signal satisfies the requirements:
the fast negative signal is in the range −5V ∼ 0, two
timing-output connectors will provide simultaneous fast
negative signals (these two signals are useful in the cal-
ibration). Now we feed the signals from two CFDs to
the Time-to-Amplitude Converter’s (TAC) START and
STOP connectors. TAC can convert the time difference
between START and STOP signals into an outgoing volt-
age pulse. The amplitude of output signal typically varies
in the range 0 ∼ 10V and is proportional to the time dif-
ference. Because the START-to-STOP time conversion
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FIG. 8. Arrangment for measuring the mean speed of muons.
θ is the zenith angle and d is the separation of two paddles.
The dashed is the trajectory of incident muons. In this exper-
iment, the delay cable between CFD and TAC STOP Input
is chosen to be 50’.

is accomplished only after the START has been identified
after a STOP pulse has arrived within the selected range.
One important step to avoid the overlap of START and
STOP signals would be adding a 50’ delay cable between
the CFD and the stop connector on TAC (see figure 8). In
order to choose the correct range, we roughly estimated
the upper limit of ∆t, which is 10ns, if the largest separa-
tion between two paddles is chosen to be 3m. Considering
the delay in the cable, 100ns is a reasonable choice for the
range. The output pulse of TAC is digitized by the Mul-
tichannel Analyzer (MCA). The pulse are counted based
on the amplitude and the amplitude is converted to the
number of channels. Through all of these procedures, the
time difference between two paddles are finally converted
to the channels which is analyzable in the PC software
Genie 2000 and the relation between time differences and
channels/bins is established through these devices.

Appendix C: Monte Carlo Simulations of Event Rate

In our code, the distribution of x, y coordinates and φ
on the upper paddle is uniform. And we use the following
rules to simulate the distribution of θ:
(i) Generate a random number ξ which is uniformly dis-
tributed in [0, 1);
(ii) Generate a random number θs which is uniformly dis-
tributed in [0, π/2);
(iii) If cos2(θs) ≥ ξ, this zenith angle is accepted, other-
wise go to the step (i).
Once the ”muon” is generated in the upper paddle, we
will track its propagation and determine whether this
”muon” can reach the bottom paddle. Repeat these pro-
cedures for many time until the counts equal 100, we get
figure 9. In addition, we estimate the time for collecting

1000 counts at different slant ranges in the unit of the
time t0 for d = 0. Our result is shown in figure 10.
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FIG. 9. Monte Carlo simulations for the slant range d = 1m.
The trajectories of muons which intrigue the counts are shown
in red while failed muons are illustrated in blue. The count
is fixed to be 100
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FIG. 10. An estimate of waiting time for 1000 counts of dif-
ferent d. t0 is the time required when two paddles are overlap
(d = 0).

Appendix D: Muon speed measurements

The distribution of counts of different separations are
fitted using Gaussian function,

count = A× exp

[
− (channel− x0)2

σ2

]
+B, (D1)

where x0 is the center of the peak, σ is the standard
deviation, A and B are constants. The results of six
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FIG. 11. 20 cm separation: the peak is x0 = 11822.2517287.
Point: original data, dashed line: fitting function.
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FIG. 12. 50 cm separation: the peak is x0 = 12140.7175374.
Point: original data, dashed line: fitting function.

separations (20 cm, 50 cm, 84 cm, 95 cm, 151 cm and
190 cm) are illustrated in FIG 11 to FIG 16.
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FIG. 13. 84 cm separation: the peak is x0 = 12260.3670297.
Point: original data, dashed line: fitting function.
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FIG. 14. 95 cm separation: the peak is x0 = 12307.7838419.
Point: original data, dashed line: fitting function.
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FIG. 15. 151 cm separation: the peak is x0 = 12584.8568775.
Point: original data, dashed line: fitting function.
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FIG. 16. 190 cm separation: the peak is x0 = 12833.1259754.
Point: original data, dashed line: fitting function.


