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Abstract

In this report we discuss some aspects of Massive Compact Halo Objects (MACHO) such as how
to detect them, assumptions which place constraints on the fraction of dark matter in MACHOs,
and some aspects of the mechanics of systems which include MACHOs.

1 Microlensing Constraints

The physical nature of dark matter has been an old enigma since the early studies toward galaxy cluster
masses and galaxy rotation curves. Possible candidates of dark matter could be weakly interacting
massive particles (WIMPs), such as axions and neutrinos, and MACHOs. One attractive and wide-
used method for searching MACHOs was firstly proposed by Paczynski in 1986, which is now called
microlensing method.

Consider the situation that a light beam from a star at distance L is deflected by a lensing object
of mass m and distance x. As a result, the brightness of the star is amplified by a factor A

A =
u2 + 2

u(u2 + 4)1/2
(1)

where u = b/RE , b is the impact parameter and RE is the Einstein radius, which encodes the physical
information of lensing objects

RE = 2

√
Gmx(L− x)

c2L
. (2)

Hence, for a given source with known position (can be used to determine b) and distance (L), the
measurements on its light curve enable us to infer A and further the mass of MACHO, m.

In practice, the amplification on the magnitude we measured is a consequence of the lensing
effect contributed from all MACHOs on the line-of-sight.It is more important to estimate the number
of MACHOs that could influent one specific microlensing event for one given threshold ATH , or
equivalently bTH = uTHRE which defines a tube. Here, the number of MACHOs inside the tube is
called optical depth τ and obviously it is an integral of number density over the whole tube on the
line-of-sight, e.g.

τ =

∫ L

0

ρ(r)

m
πu2THR

2
E(r)dr. (3)

To constrain the halo mass, we need to assume a density profile ρ(r). Kim Griest studied two different
density profiles

ρ(r) = ρ0
a2 + r20
a2 + r2

when a = 0 and a ∼ 2 − 8kpc. From his result, the dependence on the values of a is not sensitive.
However we should keep this uncertainty in mind if we apply τ to constrain the MACHO mass and
fraction.

In 2000, C. Alcock et al.[2] presented their experiment on microlensing toward the Large Magellanic
Cloud (LMC). They analyzed the 5.7 years of photometry on 11.9 million stars in LMC and finalized
13-17 microlensing events. Figure 1 shows the light curves for one event, for illustration purpose. The
fit of to a microlensing takes the form

fR(t) = A(t)f0R, fB(t) = A(t)f0B, A(t) = A(u(t))
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Figure 1: Light curves for one microlensing event. Upper and lower panels correspond to the obser-
vations in blue and red passbands.

u(t) =

√
u2min + 4(

t− tmax
t

)2

where f0R, f0B are baseline fluxes in red and blue passbands, umin corresponds to the minimal impact
factor after the MACHO enters the lensing tube. In the figure, the maximum amplification factor
Amax is achieved when u = umin. Typically, umin 6= 0 considering the density of MACHOs in the tube
may not such high that the lensing object is on the ligh between the observor and the background
star. The Einstein radius crossing time t̂ = 2rE/v⊥.

The microlensing rate dΓ/dt is model dependent comparing to τ and is often used to constrain the
MACHO mass and halo fraction f . Once the model is specified, Γ depends on the event time scale
and their velocity distribution of MACHOs. The average number of observed events is then

Nexp = E

∫ ∞
0

dΓ

dt
ε(t)dt

where E = 6.12× 107 object-years is the exposure time and ε(t) is the detection efficiency. Since the
time scale of microlensing ∝ rE/v is proportional to m1/2, it is possible to use the observed time scales
to constrain MACHO mass. In the paper by C. Alcock et al., a two parameter model (m, f) where
where a fraction f of the dark halo is made of MACHOs with a mass m while the remaining 1− f of
the halo is assumed to be in MACHOs outside the mass range. The likelihood of observing a sample
of Nobs events with time scale t̂i, i = 1, 2, ..., Nobs is given by

L(m, f) = exp(−Nexp)ΠNobs
i=1

[
Eε(ti)

dΓ

dt
(ti,m)

]
. (4)

Explicit expressions for dΓ/dt and ε(t) are given by [4] and [2]. A constraint on the m− f plane can
be obtained by maximizing the likelihood. The constraints using 17 events are shown in Fig. 2.

2 Cluster Heating by MACHOs

The dynamic environment of a star cluster leads to an interchange of velocities among the components
of the cluster. If some of those objects are MACHOs, their energy can be interact with the stars of
the cluster. According to [3], when a range of masses is present interactions lead to mass segregation
where the most massive bodies have the most spatially compact distribution, leading to less massive
objects, on average, to have a less compact distribution. If the cluster contains stars and more massive
MACHOs, this interchange can lead to the distribution of the stars becoming less compact over time.

In [3] a single star cluster near the center of recently-discovered faint dwarf galaxy, Eridanus
II, is used to compare measured half-light radius vs that predicted by the presence of MACHOs of
significantly more mass than the stars.

The change in half-light radius of the cluster over time can be predicted by the change in kinetic
energy of the visible stars. Again following [3] the change in half-light radius can be calculated as
follows.
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Figure 2: Likelihood contours for MACHO mass m and halo fraction f for model S, which has a typical
size halo.The plus sign shows the maximum-likelihood estimate, and the contours enclose regions of
68%, 90%, 95%, and 99% probability. The panels are labeled according to which set of selection
criteria (A or B) is used, and whether or not a LMC halo with MACHO fraction f is included.

The diffusion coefficient is given by

D[(∆v)2] =
4
√

2πG2fDMma

σ
ln Λ

[
erf(X)

X

]
, (5)

where

G = 6.67408km3/kg/s2 (gravitational constant),

ma = MACHO mass,

σ = MACHO velocity dispersion,

fDM = fraction of DM mass in MACHOs of mass ma, taken to be 1 here,

ρ = total dark matter density in the cluster,

ln Λ = Coulomb logarithm,

X = ratio of stellar velocity to MACHO velocity, here assumed to be small,

erf(X)/X ≈ 1 because X small.

For the Coulomb logarithm the author uses ln Λ ≈ ln
(

rhσ
2

G(m+ma)

)
, where rh is the half-light radius of

the cluster and m is the mass of the cluster stars.
With these values eq. 5 becomes:

D[(∆v)2] =
4
√

2πG2fDMma

σ
ln

(
rhσ

2

G(m+ma)

)
. (6)

Eq. 6 represents the incremental change in system velocity for MACHO mass ofma for an incremen-
tal unit of time. But in this case, all of the MACHO mass is assumed to be at ma, D[(∆v)2] expresses
the change in kinetic energy. Using eq. 6 and the Virial theorem, which relates the total average kinetic
energy of a stable system of particles to the total potential energy, here: U

M = constant−αGM∗
rh

+βGρr2h,
the change in half-light radius, which is inversely proportional to kinetic energy in the visible stars,
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can be expressed:

drh
dt

=
4
√

2G2fDMma

σG
ln

(
rhσ

2

G(m+ma)

)(
α
M∗
ρr2h

+ 2βrh

)−1
=

4
√

2GfDMma

σ
ln

(
rhσ

2

G(m+ma)

)(
α
M∗
ρr2h

+ 2βrh

)−1
.

Which can be solved numerically. A good way to solve this might be a Runge-Kutta 4th order method,
but here, for simplicity, I simply write:

∆rh =
4
√

2GfDMma

σ
ln

(
rhσ

2

G(m+ma)

)(
α
M∗
ρr2h

+ 2βrh

)−1
∆t (7)

and solve by taking small increments of ∆t.
Figure 3 shows the evolution of rh for 12 Gyears for 3 values of ρ. The following values were used

to create these curves:

α = .4,

β = 10,

M∗ = 6000M�,

ma = 30M�,

rh,0 = 1pc,

σ = 5km s−1.

These correspond to the values used in Figure 1 in [3]. The agreement is not perfect, which may be
due to the simple differencing scheme used here.
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Figure 3: Dynamical heating of a 6000 M� star cluster by 30 M� MACHOs.
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3 Conclusions

In the microlensing search, 17 microlensing systems are used and the results imply that Milky Way
halo contains ∼ 20% MACHOs. The optimized fraction is a factor of two smaller than found in
the previous work in 1997[1], where only eight microlensing candidates were used, but the MACHO
fraction is consistent within the error of the previous statistics. From this, we conclude that the
fraction is in great tension with the microlensing samples. Also, the microlensing method depends
on the halo density profile ρ(r) and especially the dynamics of MACHOs, which may significantly
influence the the duration of lensing effect ti through

ti =
2uTHRE cos θ

vr
(8)

where θ is the angle from the normal at which the MACHO enters the tube and vr is radial velocity.
In these works, the Maxwell-Boltzmann distribution is assumed for the velocity distribution. Alterna-
tively, galaxy rotation curves may provide useful clues for the MACHO dynamic models. In addition,
future multi-messenger observation may enables us to identify these MACHOs and make more realistic
models and self-consistent constraints possible.

Figures 4 and 5 plot the solution of either half-light radii = 13 (starting from rH = 2 pc), or 3
√

2
(starting from rH = 13 pc) of Eri II’s globular cluster for cluster ages of 3 and 12 Gyr, respectively.
Regions to the upper-right of the lines would be excluded because the cluster would have grown larger
than its present size.

The dynamic heating constraints here are a function of measurables rH (half-light radius, and
distance), cluster visual composition and age (star luminosity, spectra). These parameters are likely
to improve with planned instrumentation improvements (eg. the infrared James Webb telescope),which
should enable continued increase number of appropriate structures and accuracy of the measurements.
This will allow the restraints computed by this method to continue to be refined in the near- and
medium-term future.

The measured parameters of the dynamic heating and gravitational lensing methods described here
are fairly complementary so small differences in the increase of refinement rates should not immediately
exclude one over the other.
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Figure 4: Excluded by cluster in Eri II (upper-right of lines)
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Figure 5: Excluded by cluster in Eri II (upper-right of lines)

7


