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Consider a point of mass M moving through a homogeneous medium along the z-axis at a constant
non-relativistic velocity V' = Vpk. To find the turbulence inside the medium, we employ the equations
of hydrodynamics in the absence of viscous and thermal dissipations,
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where p, U, p are density, velocity and pressure of the medium as functions of ¥ and t. Let p =
po + dp(7,t) and to the lowest order (here ¥ and dp are small perturbations), equation (1)-(4) can be
rewritten as
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Introducing ¥ = dp/pgy, we obtain a wave equation
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where k% = 4nGpy/c?. Since there is no fluctuation at ¢t = 0, we have the initial conditions ¥ (7,0) =
%—f\tzo = 0. If we ignore the self gravitational interaction, or equivalently omit c2k%, Eq (9) is reduced
to
Z— — 2V = AnGMS(F — Votk), (10)
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where 2 = ¢2/~. Using the Kirchhoff formula, the solution can be written as
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where the sphere Su (,_) = {£ € R3 | |¢] = c(t — 7)}. The integral of § function vanishes unless
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here we use the connections between F,gand Tix =€,y =—,z+ & =Vor and & + €2+ €3 =
c2(t — 7)%. If the 7 that satisfies Eq (12) exists, one requires

2z = Vot)? = r2(Vf = Z) > 0, (13)



where 7, = /22 + y2. One case of interests is the hypersonic motion of the mass, say V > ¢}, where
the existence of non-zero solution requires
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where M = Vp/cl,. As we can see, inequality (14) defines the down stream of a conic shock whose cone
angle is © = sin™! % and the density in this region is given by 1. Now our task is to find 1 analytically

in the spherical coordinates. In the spherical coordinate system E = (r¢,0¢, ¢¢), ¥ = (r,0,¢) and
7 — Vork = (r',0',¢"), where
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The integral in Eq (11) becomes
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where f(1) = \/r2sin?0 + (rcosf — V)2 — c.(t — 7) and 7; is the ith root of f(7) = 0. Inside the
cone deﬁned by Eq. (14), we have
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Combining Eqgs (23),(24) and (27), we obtain
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Now, let’s justify the physical meaning of the solution. In the reference frame that is adhered to the
mass, (R, 0, ¢m), we have

Rcos b, =rcosh — Vpt (30)
Rsin6, = rsind, (31)

and oM
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where g = 0,1,2 is determined by the distribution of 7 and 7. Since 7; is solved from the equation
g(1) = (V& = )12 + 2(?t — rVycos O)T 4+ 12 — 212 = 0, (33)
or
h(r) = (V@ = 21?4 2(*t — VoRcos by, — VEt)T + R? + (VE — 2)t2 + 2RVt cos 0, = 0. (34)

Obviously h(t) = R? > 0 (we only consider the points inside the cone). Hence we only need to consider
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Case 1: g=2,if 0 < s <t and h(0) > 0. Here 0 < s < ¢ gives
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and h(0) > 0 gives

0 < R < —Vptcosby, — t\/c’s2 — VZsin? 0, or R > —Vyt cos by, + t\/cg? — V2 sin? 0,,. (38)

Case 2, g=1, if h(0) < 0 which is determined by
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Case 3, g=0, if h(0) > 0 and s <= 0 which is determined by
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and

0< R < ~Votcosly, — t1/c? — VZsin2 0y, or R > ~Vitcosby, + /2 — VEsin?6,.  (41)

Note: all the discussions are in the case m — © < 0, < 7.
These solutions are based on the assumption that the distribution of medium gas is initially
homogeneous, hence we need to take the limit t — oo inEq (32), which gives the continuous distribution
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