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Consider a point of mass M moving through a homogeneous medium along the z-axis at a constant
non-relativistic velocity ~V = V0~k. To find the turbulence inside the medium, we employ the equations
of hydrodynamics in the absence of viscous and thermal dissipations,

∂ρ

∂t
+∇ · (ρ~v) = 0, (1)

ρ

(
∂~v

∂t
+ (~v · ∇)~v

)
= −∇p− ρ∇Φ, (2)

∇2Φ = 4πG
[
ρ+Mδ(~r − ~V0t)

]
, (3)

p = c2sρ/γ (4)

where ρ,~v, p are density, velocity and pressure of the medium as functions of ~r and t. Let ρ =
ρ0 + δρ(~r, t) and to the lowest order (here ~v and δρ are small perturbations), equation (1)-(4) can be
rewritten as

∂δρ

∂t
+ ρ0∇ · (~v) = 0, (5)

ρ0

(
∂~v

∂t

)
= −∇p− ρ0∇Φ, (6)

∇2Φ = 4πG
[
ρ0 +Mδ(~r − ~V0t)

]
, (7)

p = c2sρ/γ. (8)

Introducing ψ = δρ/ρ0, we obtain a wave equation

∂2ψ

∂t2
− c2s
γ
∇2ψ − c2sk2J = 4πGMδ(~r − V0t~k). (9)

where k2J = 4πGρ0/c
2
s. Since there is no fluctuation at t = 0, we have the initial conditions ψ(~r, 0) =

∂ψ
∂t |t=0 = 0. If we ignore the self gravitational interaction, or equivalently omit c2sk

2
J , Eq (9) is reduced

to
∂2ψ

∂t2
− c′2s ∇2ψ = 4πGMδ(~r − V0t~k), (10)

where c′2s = c2s/γ. Using the Kirchhoff formula, the solution can be written as

ψ(~r, t) =

∫ t

0

[
GM

c′2s (t− τ)

∫∫
Sc′s(t−τ)

δ(~r + ~ξ − V0τ~k)dS

]
dτ, (11)

where the sphere Sc′s(t−τ) = {ξ ∈ R3 | |ξ| = c′s(t− τ)}. The integral of δ function vanishes unless

c′2s (t− τ)2 = (z − V0τ)2 + x2 + y2, (12)

here we use the connections between ~r, ~ξ and τ : x = −ξ1, y = −ξ2, z + ξ3 = V0τ and ξ21 + ξ22 + ξ23 =
c′2s (t− τ)2. If the τ that satisfies Eq (12) exists, one requires

c′2s (z − V0t)2 − r2z(V 2
0 − c′2s ) ≥ 0, (13)
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where rz =
√
x2 + y2. One case of interests is the hypersonic motion of the mass, say V0 > c′s, where

the existence of non-zero solution requires

rz ≤
|z − V0t|√
M2 − 1

(14)

where M = V0/c
′
s. As we can see, inequality (14) defines the down stream of a conic shock whose cone

angle is Θ = sin−1 c′s
V0

and the density in this region is given by ψ. Now our task is to find ψ analytically

in the spherical coordinates. In the spherical coordinate system ~ξ = (rξ, θξ, φξ), ~r = (r, θ, φ) and

~r − V0τ~k = (r′, θ′, φ′), where

r′ =

√
r2 sin2 θ + (r cos θ − V0τ)2, (15)

rξ = c′s(t− τ) (16)

(17)

Note that

δ(~r − ~r0) =
1

r2 sin θ
δ(r − r0)δ(θ − θ0)δ(φ− φ0), (18)

δ(~r + ~ξ − V0τ~k) can be written as

δ(~r + ~ξ − V0τ~k) =
1

c′2s (t− τ)2 sin θξ
δ[r′ − c′s(t− τ)]δ(θξ + θ′)δ(φξ + φ′). (19)

The integral in Eq (11) becomes

ψ(~r, t) =

∫ t

0

[
GM

c′2s (t− τ)

∫∫
Sc′s(t−τ)

δ(~r + ~ξ − V0τ~k)dS

]
dτ (20)

=
GM

c′2s

∫ t

0
dτ

∫ π

0
dθξ

∫ 2π

0
dφξ

1

c′2s (t− τ)3 sin θξ
δ[r′ − c′s(t− τ)]δ(θξ + θ′)δ(φξ + φ′)c′2s (t− τ)2 sin θξ

(21)

=
GM

c′2s

∫ t

0
dτ
δ[
√
r2 sin2 θ + (r cos θ − V0τ)2 − c′s(t− τ)]

t− τ
(22)

=
GM

c′2s

∑
τi∈[0,t]

1

(t− τi) |f ′(τi)|
, (23)

where f(τ) =
√
r2 sin2 θ + (r cos θ − V0τ)2 − c′s(t − τ) and τi is the ith root of f(τ) = 0. Inside the

cone defined by Eq. (14), we have

τ1,2 =
rV0 cos θ − c′2s t±

√
c′2s (r cos θ − V0t)2 − r2 sin2 θ(V 2

0 − c′2s )

V 2
0 − c2s

(24)

and

f ′(τi) = c′s +
V0(V0τi − r cos θ)√

r2 sin2 θ + (r cos θ − V0τi)2
(25)

= c′s +
V0(V0τi − r cos θ)

c′s(t− τi)
(26)

=
−c2st+ V0r cos θ + τi(c

′2
s − V 2

0 )

c′s(t− τi)
. (27)
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Combining Eqs (23),(24) and (27), we obtain

ψ(~r, t) =
GM

c′2s

∑
τ1,2∈[0,t]

c′s√
c′2s (r cos θ − V0t)2 − r2 sin2 θ(V 2

0 − c′2s )
(28)

=
GM

c′2s

∑
τ1,2∈[0,t]

c′s√
c′2s (r cos θ − V0t)2 − r2 sin2 θ(V 2

0 − c′2s )
. (29)

Now, let’s justify the physical meaning of the solution. In the reference frame that is adhered to the
mass, (R, θm, φm), we have

R cos θm = r cos θ − V0t (30)

R sin θm = r sin θ, (31)

and

ψ(~r, t) =
GM

c′2s R

g√
1−M2 sin2 θm

, (32)

where g = 0, 1, 2 is determined by the distribution of τ1 and τ2. Since τi is solved from the equation

g(τ) = (V 2
0 − c′2s )τ2 + 2(c′2s t− rV0 cos θ)τ + r2 − c′2s t2 = 0, (33)

or

h(τ) = (V 2
0 − c′2s )τ2 + 2(c′2s t− V0R cos θm − V 2

0 t)τ +R2 + (V 2
0 − c′2s )t2 + 2RV0t cos θm = 0. (34)

Obviously h(t) = R2 > 0 (we only consider the points inside the cone). Hence we only need to consider
the symmetric axis

s =
−c′2s t+ V0R cos θm + V 2

0 t

V 2
0 − c′2s

(35)

and
h(0) = R2 + (V 2

0 − c′2s )t2 + 2RV0t cos θm. (36)

Case 1: g=2, if 0 < s < t and h(0) > 0. Here 0 < s < t gives

c′2s − V 2
0

V0
t < xm = R cos θm < 0 (37)

and h(0) > 0 gives

0 < R < −V0t cos θm − t
√
c′2s − V 2

0 sin2 θm or R > −V0t cos θm + t
√
c′2s − V 2

0 sin2 θm. (38)

Case 2, g=1, if h(0) < 0 which is determined by

V0t cos θm − t
√
c′2s − V 2

0 sin2 θm < R < −V0t cos θm + t
√
c′2s − V 2

0 sin2 θm (39)

Case 3, g=0, if h(0) > 0 and s <= 0 which is determined by

xm <=
c′2s − V 2

0

V0
t (40)

and

0 < R < −V0t cos θm − t
√
c′2s − V 2

0 sin2 θm or R > −V0t cos θm + t
√
c′2s − V 2

0 sin2 θm. (41)

.
Note: all the discussions are in the case π −Θ < θm < π.
These solutions are based on the assumption that the distribution of medium gas is initially

homogeneous, hence we need to take the limit t→∞ inEq (32), which gives the continuous distribution

ψ(~r, t) =
2GM

c′2s R

1√
1−M2 sin2 θm

. (42)
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