Gravitational Turbulence Stimulated by a Fast-Moving Mass

Chengchao Yuan

Consider a point of mass M moving through a homogeneous medium along the z-axis at a constant non-relativistic velocity $\vec{V}=V_{0} \vec{k}$. To find the turbulence inside the medium, we employ the equations of hydrodynamics in the absence of viscous and thermal dissipations,

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \vec{v})=0 \tag{1}\\
& \rho\left(\frac{\partial \vec{v}}{\partial t}+(\vec{v} \cdot \nabla) \vec{v}\right)=-\nabla p-\rho \nabla \Phi \tag{2}\\
& \nabla^{2} \Phi=4 \pi G\left[\rho+M \delta\left(\vec{r}-\vec{V}_{0} t\right)\right] \tag{3}\\
& p=c_{s}^{2} \rho / \gamma \tag{4}
\end{align*}
$$

where ρ, \vec{v}, p are density, velocity and pressure of the medium as functions of \vec{r} and t. Let $\rho=$ $\rho_{0}+\delta \rho(\vec{r}, t)$ and to the lowest order (here \vec{v} and $\delta \rho$ are small perturbations), equation (1)-(4) can be rewritten as

$$
\begin{align*}
& \frac{\partial \delta \rho}{\partial t}+\rho_{0} \nabla \cdot(\vec{v})=0 \tag{5}\\
& \rho_{0}\left(\frac{\partial \vec{v}}{\partial t}\right)=-\nabla p-\rho_{0} \nabla \Phi \tag{6}\\
& \nabla^{2} \Phi=4 \pi G\left[\rho_{0}+M \delta\left(\vec{r}-\vec{V}_{0} t\right)\right] \tag{7}\\
& p=c_{s}^{2} \rho / \gamma \tag{8}
\end{align*}
$$

Introducing $\psi=\delta \rho / \rho_{0}$, we obtain a wave equation

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial t^{2}}-\frac{c_{s}^{2}}{\gamma} \nabla^{2} \psi-c_{s}^{2} k_{J}^{2}=4 \pi G M \delta\left(\vec{r}-V_{0} t \vec{k}\right) \tag{9}
\end{equation*}
$$

where $k_{J}^{2}=4 \pi G \rho_{0} / c_{s}^{2}$. Since there is no fluctuation at $t=0$, we have the initial conditions $\psi(\vec{r}, 0)=$ $\left.\frac{\partial \psi}{\partial t}\right|_{t=0}=0$. If we ignore the self gravitational interaction, or equivalently omit $c_{s}^{2} k_{J}^{2}, \mathrm{Eq}(9)$ is reduced to

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial t^{2}}-c_{s}^{\prime 2} \nabla^{2} \psi=4 \pi G M \delta\left(\vec{r}-V_{0} t \vec{k}\right) \tag{10}
\end{equation*}
$$

where $c_{s}^{\prime 2}=c_{s}^{2} / \gamma$. Using the Kirchhoff formula, the solution can be written as

$$
\begin{equation*}
\psi(\vec{r}, t)=\int_{0}^{t}\left[\frac{G M}{c_{s}^{\prime 2}(t-\tau)} \iint_{S_{c_{s}^{\prime}(t-\tau)}} \delta\left(\vec{r}+\vec{\xi}-V_{0} \tau \vec{k}\right) d S\right] d \tau \tag{11}
\end{equation*}
$$

where the sphere $S_{c_{s}^{\prime}(t-\tau)}=\left\{\xi \in \mathbb{R}^{3}| | \xi \mid=c_{s}^{\prime}(t-\tau)\right\}$. The integral of δ function vanishes unless

$$
\begin{equation*}
c_{s}^{\prime 2}(t-\tau)^{2}=\left(z-V_{0} \tau\right)^{2}+x^{2}+y^{2} \tag{12}
\end{equation*}
$$

here we use the connections between $\vec{r}, \vec{\xi}$ and $\tau: x=-\xi_{1}, y=-\xi_{2}, z+\xi_{3}=V_{0} \tau$ and $\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}=$ $c_{s}^{\prime 2}(t-\tau)^{2}$. If the τ that satisfies $\mathrm{Eq}(12)$ exists, one requires

$$
\begin{equation*}
c_{s}^{\prime 2}\left(z-V_{0} t\right)^{2}-r_{z}^{2}\left(V_{0}^{2}-c_{s}^{\prime 2}\right) \geq 0 \tag{13}
\end{equation*}
$$

where $r_{z}=\sqrt{x^{2}+y^{2}}$. One case of interests is the hypersonic motion of the mass, say $V_{0}>c_{s}^{\prime}$, where the existence of non-zero solution requires

$$
\begin{equation*}
r_{z} \leq \frac{\left|z-V_{0} t\right|}{\sqrt{\mathcal{M}^{2}-1}} \tag{14}
\end{equation*}
$$

where $\mathcal{M}=V_{0} / c_{s}^{\prime}$. As we can see, inequality (14) defines the down stream of a conic shock whose cone angle is $\Theta=\sin ^{-1} \frac{c_{s}^{\prime}}{V_{0}}$ and the density in this region is given by ψ. Now our task is to find ψ analytically in the spherical coordinates. In the spherical coordinate system $\vec{\xi}=\left(r_{\xi}, \theta_{\xi}, \phi_{\xi}\right), \vec{r}=(r, \theta, \phi)$ and $\vec{r}-V_{0} \tau \vec{k}=\left(r^{\prime}, \theta^{\prime}, \phi^{\prime}\right)$, where

$$
\begin{align*}
& r^{\prime}=\sqrt{r^{2} \sin ^{2} \theta+\left(r \cos \theta-V_{0} \tau\right)^{2}}, \tag{15}\\
& r_{\xi}=c_{s}^{\prime}(t-\tau) \tag{16}
\end{align*}
$$

Note that

$$
\begin{equation*}
\delta\left(\vec{r}-\vec{r}_{0}\right)=\frac{1}{r^{2} \sin \theta} \delta\left(r-r_{0}\right) \delta\left(\theta-\theta_{0}\right) \delta\left(\phi-\phi_{0}\right), \tag{18}
\end{equation*}
$$

$\delta\left(\vec{r}+\vec{\xi}-V_{0} \tau \vec{k}\right)$ can be written as

$$
\begin{equation*}
\delta\left(\vec{r}+\vec{\xi}-V_{0} \tau \vec{k}\right)=\frac{1}{c_{s}^{\prime 2}(t-\tau)^{2} \sin \theta_{\xi}} \delta\left[r^{\prime}-c_{s}^{\prime}(t-\tau)\right] \delta\left(\theta_{\xi}+\theta^{\prime}\right) \delta\left(\phi_{\xi}+\phi^{\prime}\right) . \tag{19}
\end{equation*}
$$

The integral in Eq (11) becomes

$$
\begin{align*}
\psi(\vec{r}, t) & =\int_{0}^{t}\left[\frac{G M}{c_{s}^{\prime 2}(t-\tau)} \iint_{S_{c_{s}^{\prime}(t-\tau)}} \delta\left(\vec{r}+\vec{\xi}-V_{0} \tau \vec{k}\right) d S\right] d \tau \tag{20}\\
& =\frac{G M}{c_{s}^{\prime 2}} \int_{0}^{t} d \tau \int_{0}^{\pi} d \theta_{\xi} \int_{0}^{2 \pi} d \phi_{\xi} \frac{1}{c_{s}^{\prime 2}(t-\tau)^{3} \sin \theta_{\xi}} \delta\left[r^{\prime}-c_{s}^{\prime}(t-\tau)\right] \delta\left(\theta_{\xi}+\theta^{\prime}\right) \delta\left(\phi_{\xi}+\phi^{\prime}\right) c_{s}^{\prime 2}(t-\tau)^{2} \sin \theta_{\xi} \tag{21}\\
& =\frac{G M}{c_{s}^{\prime 2}} \int_{0}^{t} d \tau \frac{\delta\left[\sqrt{r^{2} \sin ^{2} \theta+\left(r \cos \theta-V_{0} \tau\right)^{2}}-c_{s}^{\prime}(t-\tau)\right]}{t-\tau} \tag{22}\\
& =\frac{G M}{c_{s}^{\prime 2}} \sum_{\tau_{i} \in[0, t]} \frac{1}{\left(t-\tau_{i}\right)\left|f^{\prime}\left(\tau_{i}\right)\right|}, \tag{23}
\end{align*}
$$

where $f(\tau)=\sqrt{r^{2} \sin ^{2} \theta+\left(r \cos \theta-V_{0} \tau\right)^{2}}-c_{s}^{\prime}(t-\tau)$ and τ_{i} is the i th root of $f(\tau)=0$. Inside the cone defined by Eq. (14), we have

$$
\begin{equation*}
\tau_{1,2}=\frac{r V_{0} \cos \theta-c_{s}^{\prime 2} t \pm \sqrt{c_{s}^{\prime 2}\left(r \cos \theta-V_{0} t\right)^{2}-r^{2} \sin ^{2} \theta\left(V_{0}^{2}-c_{s}^{\prime 2}\right)}}{V_{0}^{2}-c_{s}^{2}} \tag{24}
\end{equation*}
$$

and

$$
\begin{align*}
f^{\prime}\left(\tau_{i}\right) & =c_{s}^{\prime}+\frac{V_{0}\left(V_{0} \tau_{i}-r \cos \theta\right)}{\sqrt{r^{2} \sin ^{2} \theta+\left(r \cos \theta-V_{0} \tau_{i}\right)^{2}}} \tag{25}\\
& =c_{s}^{\prime}+\frac{V_{0}\left(V_{0} \tau_{i}-r \cos \theta\right)}{c_{s}^{\prime}\left(t-\tau_{i}\right)} \tag{26}\\
& =\frac{-c_{s}^{2} t+V_{0} r \cos \theta+\tau_{i}\left(c_{s}^{\prime 2}-V_{0}^{2}\right)}{c_{s}^{\prime}\left(t-\tau_{i}\right)} . \tag{27}
\end{align*}
$$

Combining Eqs (23),(24) and (27), we obtain

$$
\begin{align*}
\psi(\vec{r}, t) & =\frac{G M}{c_{s}^{\prime 2}} \sum_{\tau_{1,2} \in[0, t]} \frac{c_{s}^{\prime}}{\sqrt{c_{s}^{\prime 2}\left(r \cos \theta-V_{0} t\right)^{2}-r^{2} \sin ^{2} \theta\left(V_{0}^{2}-c_{s}^{\prime 2}\right)}} \tag{28}\\
& =\frac{G M}{c_{s}^{\prime 2}} \sum_{\tau_{1,2} \in[0, t]} \frac{c_{s}^{\prime}}{\sqrt{c_{s}^{\prime 2}\left(r \cos \theta-V_{0} t\right)^{2}-r^{2} \sin ^{2} \theta\left(V_{0}^{2}-c_{s}^{\prime 2}\right)}} \tag{29}
\end{align*}
$$

Now, let's justify the physical meaning of the solution. In the reference frame that is adhered to the mass, $\left(R, \theta_{m}, \phi_{m}\right)$, we have

$$
\begin{align*}
& R \cos \theta_{m}=r \cos \theta-V_{0} t \tag{30}\\
& R \sin \theta_{m}=r \sin \theta, \tag{31}
\end{align*}
$$

and

$$
\begin{equation*}
\psi(\vec{r}, t)=\frac{G M}{c_{s}^{\prime 2} R} \frac{g}{\sqrt{1-\mathcal{N}^{2} \sin ^{2} \theta_{m}}} \tag{32}
\end{equation*}
$$

where $g=0,1,2$ is determined by the distribution of τ_{1} and τ_{2}. Since τ_{i} is solved from the equation

$$
\begin{equation*}
g(\tau)=\left(V_{0}^{2}-c_{s}^{\prime 2}\right) \tau^{2}+2\left(c_{s}^{\prime 2} t-r V_{0} \cos \theta\right) \tau+r^{2}-c_{s}^{\prime 2} t^{2}=0, \tag{33}
\end{equation*}
$$

or

$$
\begin{equation*}
h(\tau)=\left(V_{0}^{2}-c_{s}^{\prime 2}\right) \tau^{2}+2\left(c_{s}^{\prime 2} t-V_{0} R \cos \theta_{m}-V_{0}^{2} t\right) \tau+R^{2}+\left(V_{0}^{2}-c_{s}^{\prime 2}\right) t^{2}+2 R V_{0} t \cos \theta_{m}=0 \tag{34}
\end{equation*}
$$

Obviously $h(t)=R^{2}>0$ (we only consider the points inside the cone). Hence we only need to consider the symmetric axis

$$
\begin{equation*}
s=\frac{-c_{s}^{\prime 2} t+V_{0} R \cos \theta_{m}+V_{0}^{2} t}{V_{0}^{2}-c_{s}^{\prime 2}} \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
h(0)=R^{2}+\left(V_{0}^{2}-c_{s}^{\prime 2}\right) t^{2}+2 R V_{0} t \cos \theta_{m} \tag{36}
\end{equation*}
$$

Case 1: $\mathbf{g}=\mathbf{2}$, if $0<s<t$ and $h(0)>0$. Here $0<s<t$ gives

$$
\begin{equation*}
\frac{c_{s}^{\prime 2}-V_{0}^{2}}{V_{0}} t<x_{m}=R \cos \theta_{m}<0 \tag{37}
\end{equation*}
$$

and $h(0)>0$ gives

$$
\begin{equation*}
0<R<-V_{0} t \cos \theta_{m}-t \sqrt{c_{s}^{\prime 2}-V_{0}^{2} \sin ^{2} \theta_{m}} \text { or } R>-V_{0} t \cos \theta_{m}+t \sqrt{c_{s}^{\prime 2}-V_{0}^{2} \sin ^{2} \theta_{m}} . \tag{38}
\end{equation*}
$$

Case 2, $\mathbf{g}=\mathbf{1}$, if $h(0)<0$ which is determined by

$$
\begin{equation*}
V_{0} t \cos \theta_{m}-t \sqrt{c_{s}^{\prime 2}-V_{0}^{2} \sin ^{2} \theta_{m}}<R<-V_{0} t \cos \theta_{m}+t \sqrt{c_{s}^{\prime 2}-V_{0}^{2} \sin ^{2} \theta_{m}} \tag{39}
\end{equation*}
$$

Case 3, $\mathbf{g}=\mathbf{0}$, if $h(0)>0$ and $s<=0$ which is determined by

$$
\begin{equation*}
x_{m}<=\frac{c_{s}^{\prime 2}-V_{0}^{2}}{V_{0}} t \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
0<R<-V_{0} t \cos \theta_{m}-t \sqrt{c_{s}^{\prime 2}-V_{0}^{2} \sin ^{2} \theta_{m}} \text { or } R>-V_{0} t \cos \theta_{m}+t \sqrt{c_{s}^{\prime 2}-V_{0}^{2} \sin ^{2} \theta_{m}} \tag{41}
\end{equation*}
$$

Note: all the discussions are in the case $\pi-\Theta<\theta_{m}<\pi$.
These solutions are based on the assumption that the distribution of medium gas is initially homogeneous, hence we need to take the limit $t \rightarrow \infty \mathrm{inEq}$ (32), which gives the continuous distribution

$$
\begin{equation*}
\psi(\vec{r}, t)=\frac{2 G M}{c_{s}^{\prime 2} R} \frac{1}{\sqrt{1-\mathcal{M}^{2} \sin ^{2} \theta_{m}}} \tag{42}
\end{equation*}
$$

