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Abstract

The direct detection of GW150914 heralds the beginning of gravitational-wave (GW) astronomy

and from that day on, human beings acquired a new insight to explore the Universe. This article

aims to provide a comprehensive overview of the physics of GWs, the detection techniques, the

results from LIGO’s first observing run and the applications to astrophysics. Starting from Ein-

stein’s general relativity, the author discussed the radiation and propagation of GWs under the

weak-field approximation. The detectors, LIGO and its prototype resonant antennae are also intro-

duced. Then, the author reviewed several potential GW candidates, including coalescing binaries,

gravitational collapses, tidal disruption events and stochastic GW background. Relevant models

and predictions are described.
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I. INTRODUCTION

The history of astronomy is a history of receding horizons.
— Edwin P. Hubble

Physics is not a completed logical system and our understanding towards the nature has
constantly been renewed by the development of theories and experimental techniques. Since
the time of Galileo, astronomy relied on the observations of electromagnetic radiation. At
present, as one of the most important tool in astronomy, multi-wavelength technique has
broadened our eyesight from solar system to the galaxies billions of light years away from
us. Nevertheless, we are still seeking for supplementary messengers beyond electromagnetic
signals. In 1912, Victor Hess discovered the cosmic rays by sending an electrometer into
the atmosphere along with a balloon[1]. The discovery of cosmic rays was widely regarded
as the beginning of particle astrophysics, which provides a new way to study the internal
structure of astronomical sources and the mechanism of high-energy processes. The story is
totally changed in 2015, when the Advanced Laser Gravitational-Wave Observatory (LIGO)
directly detected the signal of gravitational waves from the merger of a binary black holes.
Predicted by general relativity, GWs provide a crucial link between general relativity and
the frontier of astrophysics. The direct detection of GW150914[2] heralds the beginning of
gravitational-wave (GW) astronomy and since then the era of multi-messenger astronomy,
including electromagnetic signals, cosmic rays and gravitational waves, becomes practical.

Last several decades has witnessed a great leap in astronomy, due to the development of
observing techniques. During this time, large ground-based telescopes and detector arrays
were constructed; a batch of satellites that were dedicated to detect infrared, X-ray, gamma-
ray signals were launched. Each progress has brought vitality and surprising discoveries into
astronomy, the oldest science. With the detection of GW on September 14, 2015, a brand new
window was opened. The physical nature of GW is completely different with electromagnetic
wave. Because of its unique property, we can use GWs to sense some astronomical sources
that optical telescopes cannot reach, such as the early universe when electromagnetic waves
were not decoupled. Also, for those detected sources, GWs provide a totally new approach
and some supplementary information may be obtained. Hence, it is meaningful to review
the physical foundations, detections and predictions of GWs.

An overview of the general relativity is given in section I.1 followed by the GW fundamen-
tals in section I.2 which covers the basic properties of GWs, such as plane-wave solutions,
polarizations and energy flux. Section II concentrates on detecting techniques and results.
The principle and designed of resonant antennas and laser interferometers are described in
section II.1 and II.2 respectively. Section II.3 summarizes the GW events detected in LIGO’s
first observing run. Models and predictions of various astronomical sources are discussed in
section III. These GW candidates are classified to coalescing binaries, gravitational collapses,
tidal disruption events and stochastic GW backgrounds. Remarks are given in section IV.

A. General relativity and Einstein’s equation

In this section, I want to introduce the basic physical and mathematical background of
the general relativity and deduce the equation describing GWs.

According to Isaac Newton’s Principia, the space is ideally rigid and time is absolute.
The space is an arena where events take place and the objects cannot change the space.
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Newtonian mechanics defined a set of inertial frames, in which the time is universal and
the physical laws take the unique form. Because of the infinity of the modulus of space,
gravitational waves cannot exist in this picture. One crucial step was taken in 1907 when
Einstein proposed the principle of equivalence that at every point in an arbitrary gravita-
tional field one can always find a locally inertial coordinate system (freely falling coordinate
system) such that the laws of nature take the same form as in an inertial frame without the
gravitational field[3]. Recalling the definition of differentiable manifold in which each point
has a neighborhood that is homeomorphic to the Euclidean space , one can naturally link
the gravitational field to differential geometry, or more precisely, Riemannian geometry with
Riemannian metric gµν .

From Principle of Equivalence, we can directly write down the equation of motion in the
freely falling coordinate system {xi},

d2xi

ds2
= 0 (1)

with ds2 = gµνdxµdxν = c2dτ 2 the proper interval. To find the equation of motion for
arbitrary coordinate system {ui}, we consider the transformation xi = xi(u) and

0 =
d2xi

ds2
=

d

ds

(
∂xi

∂uj

duj

ds

)
=

∂xi

∂uj

d2uj

ds2
+

∂2xi

∂ui∂uj

dui

ds

duj

ds
. (2)

Multiplying equation (2) by ∂uλ

∂xi , we obtain the equation of motion

d2uλ

ds2
+ Γλ

µν

duµ

ds

duν

ds
= 0 (3)

where Γλ
µν , the affine connection, demonstrates the difference of differential operations be-

tween Euclidean geometry and Riemannian geometry. From this treatment we can see that
the affine connection Γλ

µν functions as the force in Newton’s second law, which determines
the dynamic behavior of particles in gravitational fields. On the other hand, as shown in
equation (1), the Riemannian metric gµν determines the interval (proper time dτ 2 = ds2/c2)
between two events. In fact, the affine connection can be written as the derivatives of gµν ,

Γλ
µν =

1

2
glλ (∂µgνl + ∂νgµl − ∂lgνµ) . (4)

In general relativity, gµν plays the role of gravitational potential.

With these preparations, we are ready to construct the curvature tensor. Let’s start from
one peculiar property of curved space that the parallel displacements of a vector is path-
dependent. The change of a vector ∆Ai after parallel displacement around an infinitesimal
closed path is determined by the intrinsic property of the curved space. Integrating δAi =
Γλ
ijAλdxj along a contour and applying Stoke’s theorem, we obtain ∆Ai =

∮
C Γλ

ijAλdxj =
1
2

∫
Rλ

ijkAλdajk, where dajk is the infinitesimal area enclosed by the contour C and Rλ
ijk,

named as the curvature tensor or Riemannian tensor, is defined through

Rλ
ijk =

∂Γλ
ik

∂xj
−

∂Γλ
ij

∂xk
+ Γλ

ljΓ
l
ik − Γλ

lkΓ
l
ij. (5)
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By tensor contraction, we construct a second-rank tensor (the Ricci tensor) Rik = Rl
ilk.

It’s worthy of pointing out that only the contraction of λ, j is physical, otherwise we get a
null tensor. The reason is that Rλijk = gλσRσ

ijk is antisymmetric about the indices {λ, i}
and {j, k}: Rλijk = −Riλjk, Rλijk = −Rλikj . In flat space where no gravitational field
exists, the Riemannian metric reduces to Minkowski metric ηµν with the diagonal elements
(1,−1,−1,−1) and the curvature tensor is a null tensor. Finally, by contracting Rik, we
obtain a scalar R = gikRik which is invariant under coordinate transformation and reflects
the curvature of spacetime. So far, we have gathered all ingredients for the geometrical part
of the field equation

Rµν − 1

2
gµνR =

8πG

c4
T µν . (6)

The left hand side describes the momentum and energy of matter and the equation represents
a profound and innovative hypothesis that the curvature of spacetime is determined by the
energy-momentum tensor T µν . According to the equation field, the coupling constant of
gravitational interaction is GF = G/c4 ≈ 10−44 N−1 corresponding to the elastic modulus of
space in the order of 1030 Pa. Only catastrophic astronomical event can produce detectable
spacetime ripples; examples including coalescing binaries (black hole - black hole, black hole -
neutron star, etc), gravitational collapses (gamma-ray bursts and core-collapse supernovae),
tidal disruption events and the inflationary universe.

As for electromagnetic fields, the conservation of energy and momentum is given by
∂kT ik = 0. However, with the presence of gravitational field, DνT µν = 0 does not represent
any conservation law. HereDν is the covariant derivative operator and is defined byDνT µν =
∂νT µν+Γν

kνT
µk, the second term demonstrates the change of a vector due to the curvature of

space when performing parallel displacement while the ordinary derivative ∂νT µν corresponds
to the infinitesimal change of a vector itself. In general relativity, the overall energy and
momentum of matter and gravitational field is conserved through

∂ν [−g(T µν + tµν)] = 0, (7)

where g =det(gµν) is the determinant of Riemannian metric and tµν , the energy-momentum
tensor of gravitational field, is determined by[4]

(−g)(T µν + tµν) =
c4

16πG
∂l∂m

[
(−g)(gµνglm − gµlgνm)

]
. (8)

Recalling the physical meaning of tµν , we can naturally write down the energy density and
energy flow of gravitational radiation as t00 and ct0α (α = 1, 2, 3 correspond to the flow along
x, y, z axes) respectively. In section 1.B, we will use a simplified tµν to study the energy loss
rate due to GW raidation.

B. Foundations of gravitational waves

Considering the symmetry of gµν , the field equation can be reduced into 10 nonlinear
equations. Unfortunately, it is extremely hard or even impossible to find rigorous solu-
tions in general situation. There are two approached to alleviate this problem. One is
to linearize these equations by introducing weak-field perturbation to Minkowski metric,
gµν = ηµν + hµν , where |hµν | ≪ 1. Another method is to find the exact solutions un-
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der some special assumptions or constraints, one famous example of exact solutions is the
Friedmann-Lematre-Robertson-Walker metric which describes the isotropic, homogeneous
universe. This section focuses on the first approach to derive the equations of gravitational
radiation. The validity of weak-field approximation is ensured when the intensity of observed
gravitational wave satisfies |hµν | ≪ 1. In most cases, fortunately, it is true.

1. Weak-field approximation, plane waves

It is convenient to rewrite the field equation into covariant form. By introducing a
perturbation hµν to ηµν , the metric tensor is gµν = ηµν + hµν . To the first order of h, the
affine connection can be written as

Γλ
µν =

1

2
ηλρ(∂µhρν + ∂νhρµ − ∂ρhµν). (9)

The curvature tensor is then

Rµν = ∂νΓ
λ
λµ − ∂λΓ

λ
µν +O(h2). (10)

As already mentioned that gµν functions as the gravitational potential, the solution of field
equation cannot be unique unless one gauge is fixed. Without violating the weak-field
condition, we can consider the coordinate transformation x̄µ = xµ + ϵµ(x), if ∂νϵν is of the
same order of hµν , we can assert h̄µν = hµν − ∂νϵµ − ∂µϵν is also a solution to the field
equation which describes the same gravitational field. To simplify the equations, we choose
a particular proviso gµνΓλ

µν = 0 which determines the so called harmonic coordinate system.
Substituting Γλ

µν and Rµν into the field equation, we obtain the equation of hµν to the first
order

∂ρ∂
ρhµν =

−16πG

c4
Sµν ,

Sµν = Tµν −
1

2
ηµνT

λ
λ .

(11)

In the source part Sµν , because tµν is of the second order of h, we only consider Tµν to the
lowest order of h.

Now we investigate plane-wave solutions to equation (7) when the GWs are propagating
in vacuum. In this case, the far-field approximation is valid and therefore we take the
energy-momentum tensor Tµν to be zero. Analogous to electromagnetic waves, the general
solution of ∂ρ∂ρhµν = ( 1

c2
∂2

∂t2 −∇2)hµν = 0 is

hµν = eµν exp(ikλx
λ) + c.c. (12)

Here, eµν indicates how hµν is polarized and is thereby called polarization tensor. It is trivial
that all elements of hµν should be real, so the complex conjugate is also included in the solu-
tion and to satisfy the wave equation we require kµkµ = 0. Under weak-field approximation,
the gauge of harmonic coordinate system reduces to ∂µ(ηµρhρν) =

1
2∂ν(η

σρhσρ) which leads
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to the confinement to the polarization tensor

kµη
µλeλν =

1

2
kνη

ijeij. (13)

In general, there should be ten independent elements in eµν since it is symmetric. Applying
four the constraints from equation (13), the number is lowered to six. For a generic grav-
itational wave, only two components of eµν are physically significant. We can see this by
considering a wave traveling in +z direction and a coordinate transformation x̄µ = xµ+ϵµ(x).
The new polarization is ēµν = eµν +kµϵν +kνϵµ. Noting that kµ = (ω/c, 0, 0, k), only e11 and
e12 are invariant under the transformation while the others dependent on the magnitude
of k. In other words, for a plane wave, we can always find a new coordinate system in
which only e11 = −e22 and e12 = e21 are nonzero. Hence, hµν can be decomposed into the
superposition of plus mode h+ and cross mode h×

hµν =
[
h+e

+
µν + h×e

×
µν

]
cos(kλx

λ). (14)

In matrix form, e+µν and e×µν are respectively

ϵ+µν =

⎡

⎢⎢⎣

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

⎤

⎥⎥⎦ , ϵ×µν =

⎡

⎢⎢⎣

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎤

⎥⎥⎦ (15)

To fully understand the physical meaning of e+, ×
µν , we show that the force field in the

post-Newtonian limit. From the geodesic equation (3), we obtain the effective gravitational
acceleration[5]

ax =
1

2

(
ḧ+e11x̂+ ḧ×e12ŷ

)
· r;

ay =
1

2

(
−ḧ+e11ŷ + ḧ×e12x̂

)
· r;

az = 0.

(16)

For + polarization (e12 = 0) and × polarization (e11 = 0), the schematic line-of-force
diagrams at kλkλ = 0 are illustrated in figure 1. These diagrams depict the compressing
and stretching directions of h+, ×. The + polarization relates to the oscillation of spacetime
along the x, y axes while × polarization along the bisectors of the first and third quadrants.
The polarization property of GWs also asserts special requirements to the configuration of
detectors. Details pertaining to the GW detectors are included in section II.

2. Energy and momentum of GWs

To determine the energy flow of GWs along z direction, we need to find tµν to the lowest
order of h. Because gµν = ηµν + hµν satisfies the first-order field equation, R(1)

µν , the Ricci
tensor to the first order of h, vanishes. Therefore, to obtain the non-vanishing tµν , we have
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FIG. 1. The line-of-force diagrams for + polarization (left) and × (right) at phase 0

to write it as a function of R(2)
µν ∼ O(h2),

tµν ≈ c2

8πG

[
R(2)

µν − 1

2
ηµνη

ijR(2)
ij

]
. (17)

Instead of the instantaneous quantity, we are more interested in the average energy flow
over one period. More importantly, tµν is not gauge-invariant and this problem can be
circumvented by averaging over several periods. Combining equation (13) and equation
(17), the energy-momentum tensor of a GW traveling in z direction is

< tµν >=
c4kµkν
16πG

(
|h+|2 + |h×|2

)
. (18)

Since kx = ky = 0, the direction of energy flow is the same with the direction of k. Because

the wave vector satisfies kµkµ=0, we except k0k3 = (ω/c)k = w2/c2 and ω2|hµν |2 = |ḣµν |
2
.

The energy-flow in z direction can be written as

Sz = ct03 =
c3

16πG

[
|ḣ11|2 + |ḣ12|2

]
. (19)

In the rest part of this section, we focus on the radiative mechanisms of GWs when
weak-field approximation (|h| ≪ 1) and far-field condition (r ≫ R0 and λ ≫ R0, where R0

characterize the dimension of sources and λ is the wavelength of GW) are simultaneously
satisfied. Under these assumptions, the leading term of the multipole expansion is the
quadrupole component. Inside the source region, we can directly write down the general
solution of the equation of retard potential (eqn. 11)

hµν =
4G

c4R

∫
d3r′Sµν

(
r′,

t− |R− r′|
c

)
. (20)

Now, we confront the integral in equation (20). Using the gauge introduced in section I.B.1
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and some mathematical techniques, equation (20) yields

Sz =
G

36πc5R2

[( ...
D11 −

...
D22

2

)2

+
...
D

2
12

]
, (21)

where Dij =
∫
ρ(3xixj − r2δij)dV is the mass quadrupole moment.

Obviously, the two terms in equations (21) represent energy flow contributed by two
independent polarizations. It is useful to generalize the result so that the result does not
depend on the direction of k (in the previous derivation, we assumed k = kẑ). To achieve
this goal, we utilize the basic property of tensors that the scalars are invariant under coor-
dinate transformations. Hence

...
Dijeij =

...
D

′
ije

ij ′, where eij is the polarized tensor. Moreover,
multiplying the energy flow by R2dΩ, we obtain the invariant radiative intensity per unit
solid angle[4]

dI =
G

72πc5
(
...
Dije

ij)2dΩ. (22)

Thus far, we have derived most of the equations for computing the distortion of spacetime due
to GWs. Despite these results are obtained from the weak-field and far-field approximations,
they agree very well with observations. For example, the strain amplitudes detected by
LIGO are in the order of 10−22 which shows the precondition h ≪ 1 is perfectly met. In
addition, the first directly detected GW signal was generated about hundreds Mpc away,
greatly larger than the wavelength. In section III, we will apply these equations to various
astronomical GW candidates, including coalescing binary systems, gravitational collapses
and tidal disruption events.

8



II. GRAVITATIONAL-WAVE DETECTORS

Observations are meaningless without a theory to interpret them.
—Raymond A. Lyttleton

As one crucial part in general relativity, GWs have constantly attracted scientists to propose
and modify the detecting methods and facilities. Experiments that dedicated to the detection
of GWs dates back to the middle of last century. The biggest obstacle of relevant experiments
is tenuity of gravitational strains. The perturbation hµν in Riemanian tensor lead to a
deformation of objects ∆L ∼ L×h. As for astronomical sources, the typical upper bound of
h is around h ∼ 10−21 and thus ∆L can be easily estimated to be 10−18 m if the size of the
detector is 1 km. This displacement is roughly seven orders of magnitude smaller than Bohr
radius a = 5.26 × 10−11 m which characterizes the dimension of atoms. How to improve
the sensitivity of detectors so that the small change of distance can be precisely measured
has become the prior consideration when designing a GW antenna. Here, we focus on two
scenarios that start from two different points. The first relies on the microscopic structure
of crystals while the other attempts to use a modified Michelson interferometer. These two
kinds detectors are called resonant quadrupole antenna and laser interferometer detectors
respectively.

In 1960, J. Weber[6][7] proposed that we can make use of a crystal as resonant quadrupole
antenna to detect the displacements of mass points produced by GWs. The strains in one
crystal can lead to electric polarization and h can be determined from the induced electric
potential difference. After that, a series of experiments has been conducted and J. Weber
managed to observe several probable events[8] in 1968 using two detectors separated about 2
km. Another approach, using laser interferometers to investigate the relative displacement of
mirrors, was firstly published by M. Gertsenshtein and V. Pustovoit. Since then, J. Weber,
R. Weiss et al realized this scenario by identifying noise sources, optimizing designs and
adding amplification systems. With these efforts, the ideas and prototypes have eventually
become practical. Details pertaining to principles of laser interferometer detectors and
configurations of LIGO and VIRGO are described in section III B.

A. Resonant quadrupole antennas

In this section, we study how GWs with polarization eµν and wave vector kµ interact
with quadrupole antennas. Following the procedure in quantum scattering, the perturbed
Riemannian tensor hµν at large distance can be decomposed into a plane wave and an
outgoing scattered spherical wave,

hµν(r, t) =

[
eµνe

k·r + fµν(r̂)
eik·r

r

]
e−iωt (23)

where fµν(r̂) is the scattering amplitude. Once fµν is determined, we can furthure conclude
the polarization-dependent differential cross section dσµν/dΩ = |fµν |2 and total cross section
σtot = 4π/k Im(fµν) using optical theorem. For full scattering amplitude we expand fµν as
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a series of phase shifts δlµν(θ),

fµν =
1

k

∑

l

(2l + 1)eiδ
l
µν sin δlµνPl(cos θ), (24)

where Pl(cos θ) is Legendre polynomial. The phase shift of each polarization component can
be evaluated from the boundary conditions at the edge of scatterer. As for a given antenna
with resonant frequency ω0 and full width at half maximum Γ, the frequency-dependent
scattering amplitude is given by the e−iω0 component of Fourier series. Here, we follow the
approach in [3][6] by introducing a parameter η that characterizes the fraction of energy
dissipated in outgoing GWs when the incident GW interacts with the antenna. The total
cross section is now

σtot =
10πηc2

ω2

Γ2/4

(ω − ω0)2 + Γ2/4
. (25)

In experiment, the antenna should be tuned so that the frequency of incident GW should
to fall within the effective bandwidth of the antenna. When one bunch of GWs sweeps the
antenna, a small amount of energy is absorbed by the antenna. Oscillator inside the antenna
will transit to excited states. If the change of energy can be extracted from noses, we can
reconstruct the energy flow ct0α. Given the energy flux Φ(ω) of incident GW, the power
absorbed by a resonant antenna is

P =

∫
σtot(ω)Φ(ω)dω ≈ 1

2
πηλ2Φ(ω0)Γ (26)

where λ = 2πc/ω is the wavelength. According to J. Weber’s paper, a crystal with constants
similar to polarized barium titanate on which sinusoidal gravitational waves are incident the
absorbed power is, roughly,

P ≈ 10−19

(
Φ(ω0)

erg cm−2 s−1

)
erg s−1 (27)

To improve the sensitivity, the cross correlator receives signals from two conducting boxes
in which crystals and amplifiers are deployed, as illustrated in figure 2. The benefit of this
arrangement is that only GW can cause correlated outputs while random thermal noses are
filtered in cross correlator[9]. Employing these features, the author predicted that GWs with
Φ(ω0) ≥ 10−4erg cm−2 s−1 should be detectable.

In 1968, three GW events were detected from February to March using two separated
detectors with extremely low probability of false alerts. However, to precisely conclude the
waveform and GW sources, larger separation and broadened frequency window are required
for future experiments.

B. The Laser Interferometer Gravitational-Wave Observatory (LIGO)

Currently, the primary contributions to detect GWs employ the technique of laser in-
terferometry to record the changes of the lengths between different optical paths. The
anisotropy and polarization of GWs can be sensed by the discrepancies of ∆L between float-
ing mirrors deployed in optical arms of varying orientations. To understand the technique
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FIG. 2. Schematic diagram of correlated resonant antennas.

of laser interferometry, we can start from the principle of simple Michelson interferometer.
In a Michelson interferometer, a light beam is splitted into two arms by a beamspliter. In
each optical arm, the light is reflected back to the beamspliter by a mirror. When two light
beams encounter at the beamspliter, they combine to a single beam interferometrically

I = I0[1 + cos(δ)] (28)

where I0 and I are intensities of incident and output light beams. The phase difference of two
optical paths δ is determined by the wavelength of the light λ and the effective aberration
of light ∆Leff ,

δ =
∆Leff

λ
=

hLeff

λ
. (29)

From this equation, we conclude that to produce obvious interference effect we need to
increase the effective aberration of light and lower the wavelength without eliminating co-
herence. That is why the GW detectors use high-power laser to sense the ∆L and use
oscillating cavity to prolong ∆Leff so that the splitted light beam will travel N rounds in
one arm before combing at the beamspliter. Then ∆Leff = N ×hL, which means the strain
is amplified N times.

The LIGO system consists two detectors[10] at Hanford, WA (H1 detector) and Liv-
ingston, LA (L1 detector), as illustrated in Figure 3(a). Each site operates one LIGO
detector and we can deduce the propagating direction of gravitational waves from the time
differences between these two detectors. Each detector is a modified Michelson interferome-
ter. When one gravitational wave sweeps the Earth, the spatial length in different directions
will be either stretched or compressed. The measured difference in x direction (Lx) and y
direction (Ly) will give the gravitational-wave strain amplitude (h) projected into the direc-
tor through the relation Lx−Ly = hxy(t)L, where L=4km is the original length of each arm.
The differential length will cause a phase difference between two laser beams and hence the
gravitational-wave strain is converted to optical signal in the photodetector.

One of the biggest challenges is to achieve sufficient sensitivity to measure h(t) to the order
of 10−22. The system employs three major modifications[11] to the Michelson interferometer.
Firstly, the laser beam in each arm can oscillate between two test masses for 300 rounds.
Therefore, the differential length is accumulated and amplified by a factor of 300. Secondly,
in each arm the laser is boosted from 20 W to 100 kW, which maintains a good coherence
between two beams and therefore improves the resolution. Thirdly, one signal cycling system
is added to the output terminal. This system can optimize the signal extraction by extending
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FIG. 3. (a) the schematic diagram of LIGO detectors [2] and the instrument noise for each detector
as a function of frequency of incoming gravitational waves.

FIG. 4. The known contributors to H1 detector. The black line is the measured noise while
dashed-gray line is the ideal noise from equation (30). The components are labelled and colored.

the bandwidth of each arm cavity. With these modifications, the system noise is controlled
under 10−22[12] and the sensitivity even reaches 10−23 at 200 Hz (see Fig 1b). The spikes
in this figure are caused by the vibration modes of each part of the system. By design, the
major noise source above 100 Hz is shot noise which is dominated by Poisson processes of
photon detection. For laser interferometers, the ideal shot-noise of the strain is:

δh(f) =

√
π!λ
ηPBSc

√
1 + (4πfτs)2

4πτs
(30)
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Category Description
Transient-modeled waveforms The coalescing binary search. For these

sources, precise and stable results can
be obtained.

Transient-unmodeled waveforms The GW burst search. Transient sys-
tems like GRB, TDEs that can pro-
duce GW bursts that can only be im-
perfectly modeled due to the random
mechanisms of these events.

Continuous, narrow-band waveforms The continuous wave sources search.
An example is the GW from brak-
ing/accreting neutron stars.

Continuous, broad-band waveforms The stochastic GW background search.
Processes in early universe may pro-
duce such GWs.

TABLE I. Descriptions of LIGO GW search categories

where λ is laser wavelength, τs is the storage time in each arm cavity, f is GW frequency, PBS

is the power absorbed by the beamspliter and η is the quantum efficiency which represent
the ratio of output SNR (signal-to-noise ratio) and input SNR. Assuming η = 0.9 and PBS =
250W, we expect the shot noise to be 10−23/

√
Hz. Experimentally, the noise can be estimated

using stimulus-response tests. One known wave is fed to the system and the noise can be
estimated from the corresponding response. The estimated and measured noises are shown
in figure 4. The colored lines represent different components including seismic and thermal
noise, auxiliary degree-of-freedom noise, actuation noise. Detailed discussions pertaining the
relevant contributors can be found in [13]. LIGO is designed to differentiate GW waveforms
from various sources. According to the continuity, the signals can be classified into categories
of transient and continuous waveforms. Each category is further divided into two subgroups
by analysis techniques. Astronomical sources of these categories are summarized in table 1.
Predictions and results of relevant sources are discussed in section IV.

C. LIGO’s first observing run

In this section we report three GW events in LIGO’s first observing run from September
12, 2015 to January 19, 2016. The detectors achieved unprecedented sensitivity to GWs in
the frequency range from tenths of Hz to thousands of Hz, which enables us to record the GW
signals from evolutionary stages of binary black holes (BBH). During this observing period,
based on the transient-modeled search, two signals, GW150914[2] and GW151226[14], were
identified to be GW signals with a significance greater than 5σ. In addition, one possible GW
event, LVT151012[15], with a lower significance was also detected. Waveforms of these three
events as well as the noise curve of LIGO are shown in figure 5[15]. As we can observe in the
right panel of figure 5, the time evolution of these signals show a chirp feature that initially
the frequency increase monotonically with amplitude before dumping. This corresponds to
the spiral phase of BBH and the amplitude reaches maximum at merger. After that, GW
dumps rapidly to zero as the new-born black hole rings down to a stable state. Statistically,
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FIG. 5. Left: the measured noise curve and recovered strains of GW150914, GW151226 and
LVT151012 in the effective detection window. Right: Evolution of GW signals at 30 Hz.

FIG. 6. Important parameters of three events.

we can estimate the SNR of each event by integrating the signal in the detection window.
We can roughly think that the SNR is proportional to the area between the noise curve and
the signal curve, as shown in figure 5.

Since the waveforms agree well with the expected BBH evolutions, we can use existing
models to fit basic physical parameters of the binary system. For example, the chirp mass
M = (m1m2)3/5/(m1 + m2)1/5 of two black holes with masses m1 and m2 in terms ofthe
frequency of GW (f) and its time derivative (ḟ) is

M =
(m1m2)3/5

(m1 +m2)1/5
=

c3

G

[
5

98
π−8/3f−11/3ḟ

]3/5
. (31)

Using the waveform of GW150914, we obtain M ≈ 30M⊙ and m1 +m2 ≤ 70M⊙[16][17].
Taking the frequency and Schwarzschild radii of the binary components into consideartion,
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FIG. 7. The distribution of observed triggers as a function of the logarithm of likelihood L.

BBH is the only choice so that they can orbit with each other without contacting at the
orbital frequency of 75 Hz. More precisely, two independent methods (PyCBC and Gst-
LAL) are used to search stellar-mass BBH signals. The parameter space spanned by mass
(m1,2, mf ), spin (a1,2, af ) is scanned by using a completed collection of template waveforms.
The optimized fitting results of GW150914, GW151226 and LVT151012 are shown in figure
6. The dimensionless spin a1,2 is defined as a1,2 = c|S1,2|/(Gm2

1,2), where S1,2 is the physical
angular momentum.

The detection of GWs provides conclusive evidence of the existence of stellar-mass black
holes. The least mass of these three BBHs is the secondary mass (mz) of GW151226, which
exceeds 5.2M⊙. Based on general relativity and the principle of causality, C. E. Rhoades and
R. Ruffini showed that the maximum mass of a neutron star at hydrodynamic equilibrium
cannot be larger than 3.2M⊙[18]. Above the critical mass, stellar-mass black holes are
detected in X-ray binaries. Using 16 low-mass X-ray binaries, F. Ozel et al. inferred that
the observation can be described as a narrow mass distribution at 7.8 ± 1.2M⊙[19] and
the number of black holes decrease rapidly at high-mass end. However, LIGO’s three GW
events push the frontier of stellar-mass black holes to 60 ∼ 70M⊙ (GW150914 demonstrates
that the total mass after merger is mtot ≈ 65.3M⊙). Moreover, the high frequency of GW
events shows that the population of stellar-mass blacks of ∼ 20M⊙ may be underestimated.
Assuming a uniform distribution of BBH population in comoving frame, B. P. Abbott et al.
calculated the rate of coalescing BBHs in local universe. The distribution of astrophysical
and terrestrial triggers are illustrated in figure 7. At low likelihood, the distribution is
dominated by noises while at high likelihood the astronomical signals are overwhelmingly
favored. Hence, it is uncontested that GW150914 and GW151226 are indeed GW events
and LVT151012 is more likely to be a signal instead of noise. The joint analysis of three
events in LIGO’s first run improves the BBH merger rate from 2 − 600Gpc−3 yr−1[20] to
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FIG. 8. The probability distributions of locations of GW150914, GW151226 and LVT151012 in
equatorial coordinates.

9− 240Gpc−3 yr−1[15]. More GW events are expected to be detected in the future.
The distance dependence of strain h (equation 20) and energy flow S (equation 21) enables

us to conclude the luminosity distance of GW sources. GW150914 and GW151226 have the
similar distance of 420+150

−180Mpc and 440+180
−190Mpc[15], respectively. The signal of LVT151012 is

quite dimmer and is inferred to locate at a larger distance ∼ 1000±500Mpc. The conjecture
of sky locations is based on the sequence and time difference between two detectors L1 and
H1. The probability distributions of sky locations of GW150914, GW151226 and LVT151012
are shown in figure 8. Because only L1 and H1 detected these events, the locations are poorly
constrained with the areas of 90% confidence are 230, 850 and 1600 deg2, respectively.

After the LIGO team announced the detection of GW150914, Fermi group presented
one alert of the Gamma-ray Burst Monitor (GBM) 0.4s after the GW event[21]. With a
false alert probability of 0.0022 (2.9σ), the transient signal lasts ∼ 1s and does not show the
feature of previously known source. Despite of the ill-constrained sky location, the direction
of this transient signal is consistent with the location of GW150914. We cannot exclude
the possibility that this transient signal comes from GW150914. Moreover, the IceCube
Collaboration and ANTARES Collaboration searched the high-energy neutrino counterparts
of GW150914 and no astrophysical neutrinos were detected by both detectors within the
time interval ±500s about the GW event. Based on the non-detection fact, the upper bound
of total energy radiated in the form of neutrinos is estimated as Eν,tot ≈ 5.4×1051−1.3×1054

erg[22]. With the constantly improved sensitivity of LIGO detectors and the source rate of
9 − 240Gpc−3 yr−1, we expect to detect more GW events and by then the astronomical
sources and mechanisms can be better understood by using GWs and their X-ray/gamma-
ray/neutrino counterparts.
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III. ASTRONOMICAL SOURCES OF GRAVITATIONAL WAVES

Physics also solves puzzles. However, these puzzles are not posed by mankind, but rather by
nature.

—Maria Goeppert-Mayer

The GWs we have seen are generated from dynamics that create a time-changing mass
quadrupole moment. To produce a GW whose intensity is strong enough to be detected,
we expect the source must have a large mass, a fast speed and a strong gravitational field.
Usually, the frequency band of a GW is determined by the time scale of relevant dynamic
processes. For instance, in a binary system, the frequency of GW is the double of the orbital
frequency. We usually categorize the GW sources by the frequency band in which the GW is
radiated. For example, gravitational waves with the frequency between ∼ 1 Hz and ∼ 1 kHz
are classified to the high-frequency band; the band that is sensitive to ground-based laser
interferometers, like LIGO and VIRGO. A list of potentially observable sources in different
frequency band is given below,

1. GWs produced by the primordial stochastic background are classified to extremely
low-frequency band with frequencies in the range 10−18 − 10−15 Hz. They can be
sensed indirectly from the GW feature in the Cosmic Microwave Background.

2. Low-frequency (1 nHz - 1 Hz) GWs are usually generated in supermassive black hole
binaries (∼ 103−109M⊙) and can be detected by pulsar timing arrays and space-based
laser interferometers like LISA.

3. Neutron star/black hole binaries with mass 1M⊙ ≤ m ≤ 103M⊙, binary mergers,
GRBs and supernovae are major contributors to GWs in high-frequency band (1 Hz -
1 kHz). As we can see in figure 3 (b), the high-frequency band is covered by LIGO’s
sensitive interval. Ground based laser interferometers and resonant antennas are ca-
pable of detecting GW signals in this frequency band.

This section will provide an overview consisting of physical processes, theoretical predictions
and GW observations of these sources. To keep a coherent flow, we adapt the sequence listed
in table I, from well-modeled transient waveforms (coalescing binary systems), GW burst
(GRBs, supernovae and TDE) to continuous waveforms (e.g. stochastic GW backgrounds).

A. Coalescing binary systems

Among the potential sources of GWs, coalescing binary systems are the most promising
candidates. At present, we are more confident to draw this conclusion since all GW events
detected by LIGO are confirmed to be produced by the merger of BBHs. The binary
systems usually refer to the systems that two compact stars, such as NS-NS, NS-BH and
BH-BH, are orbiting around each other. Here NS and BH are abbreviations of neutron
star and black hole, respectively. One common feature of these systems is that they can
induce a strong time-varying quadrupole moments, which is required to produce strong GWs.
Nevertheless, our model towards binary coalescence is incomplete. When the orbital velocity
of components in a binary system approaches the speed of light, which is the occasion when
merger occurs, the post-Newtonian approximation is invalid. In addition, for neutron stars,
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FIG. 9. Schematic diagram of a binary system orbiting in x1 − x2 (x− y) plane. φ is the azimuth
angle.

the tidal interaction would cause significant modifications to the waveform especially when
the orbital radius is comparable to the radii of neutron stars. The high-speed rotating black
holes may also provide unpredictable changes to the waveform through spin-spin or spin-
orbital interactions. Considering all of these obstacles, it is a formidable task to find rigorous
solutions. (The good news is that theoritists who work in the field do not need to worry
about switching fields in the future once the model is so perfect that no further confinement
is needed.)

Without attempting to strike the general problem, we will present the simplified model
for waveforms in a coalescing binary system where only Kepler motion is considered. Despite
of the simplification, quantitive conclusions of chirp mass, phase evolution and frequency
dependence of hµν can provide some inspirations for future studies.

1. Radiation from orbiting binary systems

We start with the basic equations of GWs in section I.B.2 to derive the energy loss
rate due to gravitational radiation and the frequency dependence of the strain, say h =
h(f). Consider a binary system consisting of two point masses m1 and m2. Without losing
generality, we assume these two masses are orbiting around each other on the x1 − x2

plane and the orbital angular momentum points x3 direction. Here, we ignore the spin for
simplification. In the center-of-mass coordinates, positions of these two masses is represented
by radius vectors r1 = m2r/M and r2 = −m1r/M , where r = r1−r2 is the relative position
vector and M = m1 +m2 is the total mass. The configuration is shown in figure 9. Using
the definition of quadrupole moment Dαβ, we obtain the components:

Dxx = µr2(3 cos2 φ− 1), Dyy = µr2(3 sin2 φ− 1), Dxy = Dyx = 3µr2 cosφ sinφ, (32)
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where µ = m1m2/M is the reduced mass. For a stable binary system, the change of radius
is negligible in one orbital period, T |ṙ|

r ≪ 1. It is convenient to assume r is a constant to find
the energy loss rate dE/dt and then calculate ṙ to the first order using E = −Gm1m2/(2r).
Under this assumption and decompose Dαβ to spherical unit vector θ̂ and φ̂, equation (22)
gives

−dE

dt
=

32Gµ2r4

5c5
φ̇6 =

32G4m2
1m

2
2M

5c2r5
, (33)

here the Kepler relation φ̇ = r−3/2
√
GM is used. Now let us consider the long-term evolution

of the orbit. Because the GW radiation takes away the kinetic energy, two masses are getting
closer and closer. This effect is significant only in long-term evolutions and can be evaluated
from dE/dt:

ṙ = − 2r2

Gm1m2

dE

dt
= −64G3m1m2M

5c5r3
. (34)

It is crucial to realize that this equation is not valid for the merger of two compact objects
when the orbital radius is close to the masse. Under such circumstance, the precondition
T |ṙ|/r ≪ 1 is violated.

In the late evolution stage of a binary system, energy and matter interactions become
increasingly important. To understand the dynamics of a coalescing binary system, we
need to find the frequency dependence of strain h, in other words, how the amplitude and
frequency evolves with time. Combining hij = −2G/(3c4R)D̈ij (derived from equation 20)
and the quadrupole moment in equation (32), we obtain

h+ = −4Gµr2φ̇2

c4R
cos 2φ,

h− = −4Gµr2φ̇2

c4R
sin 2φ.

(35)

Note that the frequency of GW is doubled comparing to the orbital frequency, fGW =
2forbit = ω/π. Rewriting the strain in terms of v = rφ̇ and introducing the angle of
inclination i when the observer is not in the z axis, the GW waveform is

h+ = −2Gµ

c2R
(1 + cos2 i)

(v
c

)2

cos 2φ,

h− = −4Gµ

c2R
cos i

(v
c

)2

sin 2φ.
(36)

It is obvious that the GW from one orbiting binary system is monochromatic when φ̇
does not change. Utilizing the energy loss rate in equation (33), we show that the evolution
of waveform (characterized by f and ḟ) is determined uniquely by the chirp mass M =
µ3/5M2/5 = (m1m2)3/5(m1 + m2)−1/5. According to the virial theorem, the total energy
of a gravitational system is E = −K/2, where K is the total kinetic energy. we obtain
dE/dt = µc2(v/c)(v̇/c). Therefore, the equation (33) can be used to find the time-dependent
of v:

d(v/c)

dt
=

32c3µ

5GM2

(v
c

)9

. (37)

Integrating equation (37) over v/c from zero to unity corresponds to the integration over
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time from zero to tc, the coalescence time. In terms of initial frequency, tc is solved to be

tc =
5GM2

µc3

(
πGMf0

c3

)−8/3

. (38)

Since the GW frequency is f = v3/πGM , the first-order time derivative of f is

df

dt
=

df

dv

dv

dt
=

95

5
π8/3

(
GM
c3

)5/3

f 11/3, (39)

where M is previously defined as the chrip mass. Since dφ
dv = dφ

dt
dt
dv is in terms of v, the

phase can be written as φ = φ(f) considering the relation between v and f . Hence, f and
ḟ uniquely determine the waveform of GW. We thus can construct the waveform in terms
of f or t. On the other hand, once the the waveform is reconstructed from GW signal, we
can infer the chirp mass M, coalescence time tc and the angle of inclination i.

2. Predictions and Detectability

In 2010, J. Abadie et al. presented the coalescing rate of binary neutron stars based
on the observed binary pulsars in our Galaxy[23]. For binary neutron star inspirals, the
coalescence rate per Milky Way Equivalent Galaxy (MWEG) is estimated to be 100 Myr−1.
With the expected sensitivity of LIGO detectors, this merger rate corresponds to the binary
neutron-star detection rate in the range 0.4 to 400 per year. For neutron star - black hole
systems, the event rate is roughly 0.2 to 300 per year while a high detection rate of black
hole - black hole system is obtained: 0.4 to 1000 per year. There are several ways to convert
the galactic merger rate to a rate in the local universe. One is to assume that the binary
system is determined by the star formation rate (SFR). By comparing the galactic SFR
(3M⊙ yr−1[24]) with SFR of local universe 0.03M⊙ yr−1 Mpc−3[25], we obtain the merger
rate R ≈ 400 Gpc−3 yr−1. Above all, we conclude that binaries are optimal GW sources.
As discussed earlier, binary coalescences are usually divided into several phases where the
dynamics and waveforms have distinct features. Here, we discuss these phases in details.

The binary inspiral is actuated by the energy loss processes. In this phase, binary orbits
are assumed to be a slowly shrinking circular and frequency of GW is the twice of orbital
frequency given by Kepler formula,

fGW =
1

π

(
Gµ

r3

)1/3

≈ 1.6× 10−3

(
M

1.4M⊙

)1/2 ( r

1011cm

)−3/2

Hz. (40)

If the binary system consists of two white dwarfs with typical mass 1.4M⊙ and radius
r = 1011cm, the upper bound of GW frequency is ∼ 1.6 × 10−3Hz. As for NS-NS, NS-BH,
BH-BH binaries, the upper limit can be estimated using the Schwarzschild radius r ∼ 2Rs =
4GM/c2:

fGW,NS ≈ 103
(
3M⊙

M

)
Hz. (41)

Based on this, we conclude that the normal frequency of these binaries is typically in the
range 1 ∼ 1000 Hz. In time domain, the amplitude of strain in equation (36) can be
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expressed in terms of f using f = v3

πGM :

hT ∼ Gµ

c2R

v2

c2
=

µ

c4R

(
Gf 2

πM2

)1/3

. (42)

Instead of the strain in time domain, the characteristic amplitude detected by GW de-
tectors is the amplitude of corresponding Fourier series, hF (f) ∼

√
NhT (f)[26], where

N = f 2(df/dt)−1 is the number of circles that the binary undergoes while the frequency
of the wave changes an amount of f . Combining the expression of df/dt in equation (39)
we obtain the frequency dependence of hF

hF (f) ∝ f−1/6. (43)

This relation will later be used to discuss the detectability of the inspiral phase.

At the end of inspiral phase, the binary companions will contact and rapidly plunge
together. In this process, the formulism we previously constructed in this paper is no
longer valid and numerical simulations are required. E. Flanagan and E. Hughes (1998)
and S. Kobayashi and P. Meszaros (2003) showed that the frequency band of the deformed
core/disk in this phase is narrow[26][27]. To the simplest form, the deformation can be
considered as a bar. The mean strain is given by

hF ≈ 1.9× 10−21

(
R

10Mpc

)−1 ( r

106cm

)−1 m1m2

M2
⊙

. (44)

Later in this evolution, GWs are produced from the rqpid vibrations of the ellipsoid, this
stage is named as ring-down of binary coalescence. In this phase, the frequency reaches the
upper bound

fq(a) ≈ 32F (a)

(
M

M⊙

)−1

kHz, (45)

where F (a) = 1− 0.63(1− a)3/10 and a is dimensionless spin parameter of the new-forming
black hole. The characteristic GW amplitude at fq is given by

hF ∼ 2.0× 10−21

(
R

10Mpc

)−1 µ

M⊙
, (46)

here, Q(a) = 2(1 − a)−9/20. Derivation of equation (44)-(46) is out of scope of this paper
and can be found in [28].

One application of equations disused in this section if to calculate the GWs produced by
GRB progenitors. Potential progenitors of normal GRBs can be classified into two categories,
binary mergers (such as double neutron stars, black hole - neutron stars and black hole -
while dwarf) and fast-rotating massive stellar collapses. S. Kobayashi and P. Meszaros
(2003) showed their results of GWs produced in the first scenario. Figure 10 illustrates the
comparison between LIGO sensitivity

√
[fS(f)] and GW signals from double neutron stars

(DNS) and neutron star - black hole (NSBH). They also discussed the detectability of black
hole - while dwarf and black hole - helium star scenarios and found that these two kinds of
progenitors are not likely to be detected by LIGO, due to the relatively weaker strains.
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FIG. 10. GWs intensitis from double neutron stars (left panel) and neutron star-black hole (right
panel) compared to the LIGO sensitivity (dashed line). In both figures, solid line, dot-dashed line
and solid spike correspond to inspiral, merger and ring-down phases, respectively

B. Gravitational collapse

We now consider gravitational radiation from the collapses of massive stars. There are
several collapsing channels depending on the mass of progenitors and the environment. When
the fusion fuels in a lightly massive star (≤ 8M⊙) get exhausted, a white dwarf, in which
gravity is balanced by electron degeneracy pressure will be produced as a remnant. If a white
dwarf is in a binary system and gains mass from its companion, accretion-induced collapse
may occur once the mass of the while dwarf exceeds Chandrasekhar mass limit (∼ 1.4M⊙).
During the collapse, if the nuclear reactions are ignited due to the high temperature and
pressure, the white dwarf will explode and a Type Ia supernova is produced. Typically, stars
with mass larger than 8M⊙ will end their lives through core collapse and a neutron star or a
black hole rather than white dwarf will be produced. In this scenario, the collapse triggers
Type II supernovae as well as Type Ib/c supernovae. As is mentioned in the last section,
some long-duration GRBs are believed to be formed by more violent collapses when black
holes are produced. Very massive stellar-mass stars (≥ 50M⊙) are capable of collapsing into
black holes without undergoing supernovae. Despite these scenarios has been established for
decades, we still cannot fully understand the parameters and processes related to the stellar
evolution. Nevertheless, with the development of GW astronomy, we gained one powerful
tool to depict the physical picture of stars especially the relevant non-spherical dynamics.

The conservation of angular momentum predicts that the white dwarfs, neutron stars
and black holes formed from collapses are usually fast-spinning, which also demonstrats
that these products are promising GW radiators. If the new born proto-star is rapidly
spinning, its shape can be extremely deformed from a sphere to a bar, due to the intense
centrifugal force. This still occurs even the collapse is spherically symmetrical. In this
section, we will calculate the GW strains from the collapse phase and the bar phase.

1. Modeling the GWs from collapses

Let us consider an axisymmetric collapse of a stellar core rotating with the angular
momentum L. According to the conservation of angular momentum, the matter near the
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FIG. 11. Rotational energy divided by the gravitational energy β = Erot/EG versus mass of
collapse.For dotted and solid lines, the x axis is in the unit of 70M⊙ while the dashed line represent
a 300 M⊙ scale.

axis falls inward faster than the matter near the equator. Hence, the spherical core becomes
an axisymmetric ellipsoid. The eccentricity is e ≈ L/

√
GM3r, where M is the mass of the

core and r is the equatorial radius. As we can see, the eccentricity increases as the size
decreases. Before the density of the core reaches the nuclear density, the duration collapse
is estimated as the free-fall timescale

tdyc ≈ tff =

(
3π

32Gρ

)1/2

∼ 0.1ms. (47)

Here, we assume the density of final stage of the collapse is the nuclear density 1018kg m−3.
For a biaxial ellipsoid with a uniform density distribution and the axis pointing z direction,
the principle moments of inertia are Dxx = Dyy =

2
5Mr2(1− e2/2) and Dzz =

2
5Mr2. There

is no GW along z axis while observers on the equatorial plane will detect the strongest
strain, which is given by

h ≈ G

c4
D̈xx − D̈zz

R
∼ GM

c2R

(
er

ctdyc

)2

∼ 10−20

(
R

10kpc

)−1( M

1M⊙

)
(48)

with e ∼ 0.1. Note that the radius 10kpc is the characteristic distances of supernovae in the
Galaxy.

When the core is rapidly rotating, GWs can be radiated from the non-axisymmetric
motion. In such situation, the geometry of stellar core can be simplified as a bar with a
rapidly varying quadrupole moment. Bar-mode instability is stimulated when centrifugal
potential energy Ecen becomes significant comparing to the gravitational potential energy
EG. If the ratio β = Ecen/|EG| is significant, the object is unstable on a secular time scale[29].
Dynamic instability occurs when β ≥ 0.27. According to modern progenitor models, the

23



FIG. 12. Strains of bar-mode GWs.

rotation speed of collapse is relatively lower comparing to early models. However, the
rotational energy can be comparable to the gravitational potential energy (see figure 11).
Using equation (20), we obtain the root-mean-square gravitational strain for a bar of mass
m, length 2l and angular velocity ω:

h =

√
32

45

Gmr2ω2

c4R
. (49)

Analogous to binaries, the frequency of GW emissions is twice the rotational frequency. In
the bar mode, the clumps of collapsing material can rotate around the core with collapse
processes. This will induce fragmentation instability as indicated from some simulations
[30]. GWs generated from this instability can be classified to binary systems and we can
use equation (36) to estimate the corresponding gravitational strains.

2. Results of GW emission

Using equations we obtained in previous section, we can now calculate the gravitational
strains for two important cases - supernovae and GRB progenitors. For each scenario, we
summarize the expected gravitational strains from bar instabilities.

The supernovae rate is well constrained in an interval between 1 per 50-140 years per
galaxy. However, we also need to consider the distribution of angular velocity or angular
momentum to determine the applicability of bar model. According to Chernoff & Cordes,
the initial spin periods of pulsars can be fitted using a Gaussian function with the average
P̄ = 7ms and sub-ms pulsars lying behind the 2σ tail. Based on the bar model, C. Fryer et
al (2002) showed the strains of core-collapse supernovae (see figure 12). In their calculation,
they assume all mass inside a radius will participate the bar instability. In figure 12, from
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FIG. 13. The parameter space of tidal disruption events. A star with the corresponding β lying in
its respective trangel can be disrupted by the black hole.

left to right, the dots represent strains from a increasing sequence of radii. The closed
dots are obtained by assuming the bar mode exists in 100 GW periods while the open dots
correspond to the signal circle duration. As we can see from figure 12, At 10 Mpc, the
collapses with short-duration bar mode are potentially to be detected by LIGO. In 2013, A.
Corsi and P. Meszaros[31] investigated the connection between X-ray afterglow of GRBs and
the formation of millisecond magnetars. In this scenario, they found that the GWs from the
bar instability of nascent neutron star can be detected un to a distance of 100 Mpc. The
GW signals are typically accompanied with an afterglow light curve plateau from GRBs,
which demonstrates that the joint searches for collapsars as GRB progenitors are possible.

C. Tidal disruption events

It has long been believed that most galaxies harbor one or more supermassive black holes
(SMBHs) with masses in the range 105 − 109M⊙. A tidal disruption event occurs when a
star gets sufficiently close to a SMBH and is pulled into debris by the strong tidal force.
Because TDE typically occurs with flares of electromagnetic radiation and GW emissions,
TDEs provide an important method to probe SMBHs in active galaxies.

In the Newtonian picture, for a star of M and radius R orbits around a black hole of
mass MBH , the critical orbital radius of tidal disruption is [32]

RT = R

(
MBH

M

)1/3

≈ 1012
(

MBH

106M⊙

)1/3( M

M⊙

)−1/3 R

r⊙
cm (50)

Most astrophysical TDEs are expected to be formed from zero-energy, parabolic orbits.
If the minimum pericenter distance RP satisfies RP ≤ RT , the self gravitational binding
force cannot resist the tidal force and the star will be disrupted. The strength of disruption
events can be measured by a dimensionless parameter β = RT/RP . On the other hand, for
a SMBH, the horizon radius increases linearly with MBH , i.e. Rs = 2GMBH/c2, there exists
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FIG. 14. Light curve of X-ray flare from SDSSJ120136.02+300305.5, based on XMM-Newton and
Swift observations. Red solid line is the prediction given by[34].

a critical mass (Hill mass) of the SMBH that is derived from Rs = RT ,

MHill = 1.1× 108M⊙

(
R

R⊙

)3/2 ( M

M⊙

)−1/2

, (51)

above which stars will be absorbed to the black hole prior to tidal disruption. In this case,
electromagnetic signals are uninteresting despite GW signals are still radiated. Taking the
constraints of β and MBH in to consideration, the parameter space of TDEs is illustrated in
figure 13[33]. The three triangles are calculated for solar-type stars (blue dashed), red giants
with M = M⊙, R = 10R⊙ (red solid) and white dwarf with M = M⊙ and R = 0.01R⊙
(black dotted). If β < 1, no TDE occurs. The left upper sides of thees trangles represent
R = RP . If R > RP , the black hole will be swallowed by the star while the right upper sides
correspond to the condition RP < RT = Rs.

TDEs can produce detectable flares extending from gamma-ray to radio bands. A com-
prehensive review of the status of observations can be found in [35] and references therein.
Here, we high light one TDE observed by Swift and XMM −Newton. Among the TDEs
in XMM-Newton’s X-ray survey, SDSSJ120136.02+300305.5 has the the best recorded first-
year light curve due to the follow-ups with XMM-Newton and Swift, as shown in figure 14.
From this figure we find that the peak luminosities are up to ∼ 1044erg s−1 in the soft X-ray
band. The time scale of X-ray lightcurve decay is several months. Besides, the data points
are consistent with the power law L ∝ t−5/3, as predicted by the disruption theory [36].

Besides the electromagnetic emissions, TDEs also generate GWs that are detectable to
LISA. In [37], S. Kobayashi et al. showed that the GW strain from tidal disruptions is
approximately

h ∼ GMRs

c2rRP
≈ 2× 10−22β

(
r

10Mpc

)−1( R

1R⊙

)−1( M

M⊙

)4/3 ( MBH

106M⊙

)2/3

(52)
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FIG. 15. Characteristic GW strains with M = 2M⊙ and MBH = 106M⊙. The LISA noise curve is
also shown in the figure.

at the frequency

f ∼

√
GMBH

R3
P

≈ 6× 10−4Hz β3/2

(
M

M⊙

)1/2( R

R⊙

)−3/2

. (53)

Employing a three-dimensional relativistic smoothed particle hydrodynamics (SPH) code,
they presented GW waveforms and strains from the disruptions of solar-type stars (figures
4 - 7 in [27]) and Helium stars (figure 8). In both cases, the GW bursts can be detectable
to LISA up to the distance r ≈ 20Mpc. W. East (2014) considered the modification to
GW strains due to black hole spins and found that collisions with angular momentum can
substantially boost the GW strength[38]. The characteristic GW strains from main-sequence
star disruptions are shown in figure 15. In the figure, angular momentum L = GM/c3 are
written in geometric units with G = c = 1. Moreover, the TDE rate is estimated in the
range 10−5 − 10−3yr−1 per galaxy, which demonstrates that TDEs are likely to be detected
by space-based interferometers.

D. Stochastic GW backgrounds

Other than the GW individual sources discussed in previous sections, there exists a
gravitational-wave background distributed over the sky. At cosmological distance, GWs
from these individual sources can overlap with each other and it becomes impossible to
differentiate the respective contributors from the superposition of their GW signals. In
this case, the GW spectra of individual sources become less important. Nevertheless, the
background encodes information of cosmological evolutions and stellar distributions. Since
the sum of signals obeys Gaussian distribution, guaranteed by the central limit theorem,
the GW background is named as stochastic background. Despite that we no longer need to
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analyze the GW spectra source by source, the random nature of stochastic GW backgrounds
makes it challenging to distinguish the signals from noises. One solution to this problem is
using two detector with uncorrelated noise function to extract the signals, as implemented
by LIGO. In this section, we will focus on cosmological as well as astronomical sources of
stochastic backgrounds of gravitational waves.

Analogous to the cosmic microwave background (CMB), the afterglow of radiation from
early universe, GWs are generated within a short time after the Big Bang. Comparing
to electromagnetic field of CMB, gravitational interactions have a much smaller coupling
constant which results in a much shorter decoupling time, the Planck time tP =

√
!G/c5 ≈

10−43s[39] after the Big Bang. Unfortunately, GWs from Planck era are not detectable due
to the inflation of early universe. If inflation indeed happened, the wavelength of GWs
from cosmic sources at that time is comparable to the size of universe (i.e. the Hubble
length c/H) which can be evaluated from current value l0 = c/H0 ≈ 1026 m. Assuming a
flat Friedmann-Lemaitre-Robertson-Walker cosmology (or FLRW cosmology), the Hubble
length is proportional to time and λ1 = (t1/t0)l0, where λ1 is the wavelength of cosmic
gravitational-wave background (CGWB) at cosmos time t1 and t0 is current time. Note
that in the radiation-dominant universe, the redshift of wavelength is scaled as

√
t while in

the matter-dominant universe the redshift scales wavelength as t2/3. Hence, considering the
redshift evolution of λ due to cosmological expansion, the current GW wavelength is

λ0 =
t1/21

t1/30 t1/6eq

l0, (54)

where teq is the time when matter density is equal to radiation density. Take t1 = 10−35s
when the universe is described by Grand Unified Theory (GUT), we obtain the wavelength
at current time λGUT (t0) = 300 m, corresponding to the frequency 108 Hz. This frequency is
far more larger than the sensitive bands of current GW detectors. On the other hand, from
equation (54), we conclude that the gravitational-wave background generated 10−23s after
the Big Bang is visible to LIGO (at the most sensitive frequency ∼ 100 Hz) while 10−15s for
LISA at ∼0.01 Hz. Thus, cosmological GW backgrounds provide us an early glimpse of the
Universe.

Now, we concentrate on the energy density spectrum of stochastic background. As in
[40], we define the density parameter of GW background

ΩGW =
1

ρc

dρGW

d ln f
, (55)

where ρc = cH2/(8πG) is the critical density. B. Allen (1996) showed the relationship
between gravitational-wave power spectral density Sh(f) and ΩGW (f):

Sh(f) =
3H2

0

2π

ΩGW (f)

f 3
. (56)

As for detectors, e.g. LIGO and VIRGO, the characteristic strain spectrum is defined as
hc(f) =

√
fSh(f). Hence, in terms of hc(f), the density parameter of GW background is

ΩGW (f) =
2π2

3H2
0

f 2h2
c(f). (57)
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FIG. 16. Constraints on stochastic GW backgrounds (ΩGW (f) v.s. f). Meanings of these lines are
given in the text.

Usually, one detector only cover one small frequency band of the GW background, thus it
is reasonable to confine our attention to a power-law spectrum, i.e. ΩGW,α = Ωα(f/fref )α,
where α indicates the spectral index and fref is a reference frequency. This definition
naturally follows that hc(f) is also a power-law function with the index α = 2β + 2, i.e.
hc(f) = hc,β(f/fref )β and Ω2α+2 = 2π2hc,α/(3H2

0 ). For GW background from inflationary
cosmology, we usually assume a constant spectrum with α = 0 and ΩGW,0 = Ω0. For a
background generated by coalescing binaries ΩGW,2/3(f) = Ω2/3(f/fref )2/3 [41].

The data from LIGO’s first observing run shows no evidence of stochastic gravitational-
wave signals. Based on that, B. Abbott et al (2017) reported the latest constraints on
Ω0 and Ω2/3 by employing the cross-correlation method for the pair LIGO detectors[42].
Comparing with the previous obtained from 2009-2010 LIGO and Virgo Data [43], the
upper limits of Ω0 and Ω2/3 in the frequency interval 20−85.8 Hz are improved to 1.7×10−7

and 1.3×10−7[44] at 95% confidence, respectively. To model the background contributed by
coalescing binaries, they divided the population of compact binaries into categories labelled
by k and the parameters, such as masses, of each group are labelled by θk. The overall
contribution to the background is then

ΩGW (f) =
f

cH0

∑

k

∫
dz

Rm(z; θk)

(1 + z)E(ΩM ,ΩΛ, z)

dEGW

df
(fs; θk) (58)

where Rm(z; θk) is the binary merger rate (of k-kind binaries) per unit co-moving volume
per unit time, dEGW/df is the energy spectrum emitted by on single binary evaluated in the
frequency fs = (1+ z)f and E(ΩM ,ΩΛ, z) =

√
ΩM(1 + z)3 + ΩΛ represent the cosmological

effect on the distance. Details pertaining the selection of each function and parameter can
be found in [44] and references therein. The expected contributions to ΩGW (f) from binary
black holes and binary neutron stars is shown in figure 16 (as labelled by BBH and BNS,
respectively). This figure also shows the constraints from GWs by LIGO’s first observing run
(aLIGO O1), initial LIGO-VIRGO data and CMB. The line labelled by Slow−RollInflation
represents the background contributed by slow-roll inflation with a tensor-to-scalar-ratio
r = 0.11[45]. Besides, the expected sensitive curve of LISA is also shown as the dashed
red line. From this figure, we find the GW backgrounds from coalescing binaries (BBH and
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BNS) cross with LISA’s sensitive curve, which demonstrates that the corresponding GW
signals may be detectable by LISA.
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IV. REMARKS

Somewhere, something incredible is waiting to be known.
— Carl Sagan

Gravitational waves are one of the most inspiring predictions of general relativity, and pro-
vide an unprecedented probe of extreme gravity environments in the Universe. The first
direct detection of GW has a particular meaning to both fundamental physics and astron-
omy.

As one of the foundations of modern physics. general relativity is well tested by the
perihelion advance of Mercury and gravitational lensing effect. These observations provided
strong implications that general relativity is correct. Gravitational wave, which is precisely
predicted by the field equation, also agrees perfectly with the observations as expected.
Moreover, GWs were in return been used to test the principle of equivalence to an unprece-
dented precision[46][47]. However, we still need to face the fact that the general relativity
is not completed. It has been proved in 1970s that the space-times may become singular
under some circumstances[48]. One example is the Big Bang which is believed to be the
origin of the Universe. Essentially, singularity indicates that the theory is applied to the
conditions that are beyond the realm of applicability. In this case, appropriate modifications
or a substitutive theory is required to eliminate the divergence. As discussed previously, cos-
mological GWs generated in the early universe have the potential to be detected by current
devices. In the future, GWs may become a powerful tool to study and test the physics of
very early universe.

As for astronomy and astrophysics, using GWs, we stand to learn a great deal about
astronomical phenomena that are inaccessible to electromagnetic telescopes. Since GWs
reveal how a mass is changed and interact faintly with the ambient medium, we can use it
to study the dynamics of opaque sources which is dim to electromagnetic telescopes due to
the optical absorption. Hence, with the participation of GWs, we can see more things that
are once impossible for optical telescopes. Furthermore, for the previously observed objects,
GWs can be used to study the physical mechanisms from a brand new point of view. One
puzzle in astronomy is the population of stellar-mass black holes in local universe. Previous
evidence majorly relies on the observation of X-ray binaries. Now, the whole picture of the
evolution of binary systems, including the orbital circulation, inspiral, merger and ringdown,
can be depicted precisely using GWs. For example, from the GW waveform, we can directly
calculate the chirp mass and further conclude the mass ratio through relativistic simulations.
In addition, cross validations from multi-messenger method may improve the constraints
of parameters to an unprecedented level of accuracy. Once the LISA is launched or the
successors of LIGO come in to operate, there will be increasing implications to physics and
astronomy.
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