Credit: DESY, Science Communication Lab https://www.desy.de/e409/e116959/e119238/media/9170/TDE_DESY_SciComLab_sound_080p.mp4

Multi-Messenger Modeling of Neutrino-Coincident Tidal Disruption Events

Chengchao Yuan

<u>yuan-cc.github.io</u>

DESY AP Seminar November 17, 2023

HELMHOLTZ

Multi-Messenger Modeling of Neutrino-Coincident Tidal Disruption Events

- Theoretical and observational pictures of TDEs
- Particle interactions and isotropic winds models
- Neutrino and EM cascade emissions from neutrino-emitting TDEs, AT2019dsg and AT2019fdr
- A fourth neutrino-coincident with strong dust echo??
- Open questions and outlook

Tidal disruption events

When a massive star passes close enough to a SMBH

The star can be ripped apart by the tidal force at tidal radius

$$r_T = (M/m_\star)^{1/3} r_\star \simeq 5 \times 10^{12} \text{ cm} \left(\frac{M}{10^6 M_\odot}\right)^{1/3} \frac{r_\star}{r_\odot} \left(\frac{m_\star}{M_\odot}\right)$$

- Should be larger than Schwarzschild radius of SMBH, $r_s = 2GM/c^2 \simeq 3 \times 10^{11}$ cm M_6
- A theoretical up limit of SMBH mass in TDE $M < 3.6 \times 10^8 M_{\odot} \left(\frac{m_{\star}}{M_{\odot}}\right)^{2-\frac{3}{2}\xi}$

to disrupt a main sequence star of radius

 $r_{\star} = R_{\odot} (M_{\star}/M_{\odot})^{(1-\xi)}$

 $\xi \approx 0.4$ for $M_{\star} < 10 M_{\odot}$ (Kippenhahn & Weigert 1990)

Tidal disruption of stars by black holes of $10^6 - 10^8$ solar masses in nearby galaxies

ARTICLES

Martin J. Rees

NATURE VOL. 333 9 JUNE 1988

Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK

Stars in galactic nuclei can be captured or tidally disrupted by a central black hole. Some debris would be ejected at high speed; the remainder would be swallowed by the hole, causing a bright flare lasting at most a few years. Such phenomena are compatible with the presence of $10^6-10^8 M_{\odot}$ holes in the nuclei of many nearby galaxies. Stellar disruption may have interesting consequences in our own Galactic Centre if $a \sim 10^6 M_{\odot}$ hole lurks there.

Tidal disruption events

When a massive star passes close enough to a SMBH

- ~ half of the star's mass remains bounded by the SMBH gravitational force
- Mass accretion -> months/year-long flare
- Energy to be reprocessed by accretion ~ 10^{54} erg
- Fallback rate $\propto t^{-5/3}$ (Phinney 1989)
- Thermal black body (bb) emissions in optical/UV (OUV) bands.
- Some (~1/4) TDEs are observed in X-ray and infrared (IR) ranges, e.g., AT2019dsg (Stein et al. 2021)

Tidal disruption of stars by black holes of 10^6-10^8 solar masses in nearby galaxies

ARTICLES

Martin J. Rees

NATURE VOL. 333 9 JUNE 1988

Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK

Stars in galactic nuclei can be captured or tidally disrupted by a central black hole. Some debris would be ejected at high speed; the remainder would be swallowed by the hole, causing a bright flare lasting at most a few years. Such phenomena are compatible with the presence of $10^6-10^8 M_{\odot}$ holes in the nuclei of many nearby galaxies. Stellar disruption may have interesting consequences in our own Galactic Centre if $a \sim 10^6 M_{\odot}$ hole lurks there.

TDE observational signatures: universal

Radio

- A small fraction of TDEs exhibit luminous radio relativistic jet. Most are radio quiet.
- Delayed radio may come from jet propagating in wind density profile $\rho(r) \propto r^{-k}$ (1.5 $\leq k \leq 2$) (Metzger+ 2016)

AT2019dsg

- ZTF (optical: g, r) + Swift UVOT (UV)
- Swift-XRT/XMM-Newton: X-ray (0.3-10 keV)
- *z* ~ 0.051
- Fermi (0.1-800 GeV) and HAWC (0.3-100 TeV) up limits

DESY. | Multimessenger Modelling of Neu-Coincident TDEs | Chengchao Yuan, 17/11/2023

• $t_{\nu} - t_{\rm pk} = 150 \text{ d}$

Measured black body spectra:

- **X-ray**: $T_X = 72 \text{ eV}$, from hot accretion disk
- **OUV**: $T_{OUV} = 3.4 \text{ eV}$, from photosphere (nearly constant)

• IR:
$$T_{\rm IR} = 0.15 \, \, {\rm eV}$$
 (dust echo)

AT2019fdr

- ZTF (optical: g, r) + Swift UVOT (UV) + IR
- Swift-XRT: X-ray (0.3-10 keV)
- *z* ~ 0.267
- Angular offset: 1.7 deg; $t_{\nu} t_{\rm pk} = 393$ d
- *Fermi* up limit √

Reusch et al. (2022)

DESY. | Multimessenger Modelling of Neu-Coincident TDEs | Chengchao Yuan, 17/11/2023

AT2019aalc

Questions for Neutrino-Coincident TDEs

- Where are radio, OUV, IR, X-ray (XRT, eROSITA, NICER), γ -ray and neutrino emissions produced?
- Temporal signatures? delayed infrared and neutrino emissions, EM counterparts in time domain
- Multi-messenger implications, e.g., from X-ray/ γ -ray up limits to neutrino constraints

What we have

- Thermal optical/ultraviolet, X-ray, and infrared spectra/light curves.
- Up limits from γ -ray flux by Fermi, HAWC etc
- Neutrino correlation: detection time, energy

What we need for existing observations

- Radiation sites: jet, wind, disk corona, etc
- CR acceleration/injection
- Theoretical/numerical modeling of interactions

TDE models

Disks - Hayashaki & Yamazaki 19 (HY19) Wide angle winds - Fang 20, Murase+ 20 Stream-stream - Dai + 15,, HY19, Jets - Wang + 11, Wang & Liu 16, Dai & Fang 17, Lunardini & Winter 17, Senno + 17

- γ-rays, non-thermal X-rays: relativistic jet, sub relativistic wind
- Thermal X-rays: close to jet/funnel & hot disk corona
- Optical/UV: photosphere of hot disk corona (beyond which integrated optical depth < 1)
- Infrared (IR): dust-echo
- **Radio:** non-thermal (particle acceleration in disk, jet, outflow)

TDE models

- In addition to the EM signatures, neutrinos might be produced in the accretion disks, disk winds (outflows), or jets
- Three TDEs may be associated with IceCube neutrino events
 - 1. AT2019dsg (IC191001A)
 Focus of this work

 2. AT2019fdr (IC200530A)
 Focus of this work
 - 3. AT2019aalc (IC191119A) Less complete
 - γ -ray/X-ray constraints
- Three TDE candidates with luminous jets (no
 - u association reported):

Swift J1644+57, Swift J2058+05 & AT2022cmc

DESY. | Multimessenger Modelling of Neu-Coincident TDEs | Chengchao Yuan, 17/11/2023

Dust Echo: infrared (IR) emission

X-ray/OUV photons heat the dust torus

- -> thermal IR emission
- could explain delayed IR emission
- feeds IR photons back to the wind/outflow envelope
- temperature $T_{\rm IR} \lesssim 0.16~{\rm eV}$ (Reusch et al. 2022)
- IR luminosity can be obtained by convolving $L_{\rm OUV}$ with a box function f(T), e.g., (Reusch et al. 2022, Winter & Lunardini 2022) $L_{\rm IR}(t) \propto \int L_{\rm OUV}(t')f(t-t')dt'$
 - (Box function reflects the dust distributions)

Dust radius (R_{IR}) can be inferred from IR time delay w.r.t OUV emissions.

 $R_{\rm IR} = c\Delta T/2$

One simplest normalized box function is

 $f(t) = 1/\Delta T$, if $0 < t < \Delta T$. Otherwise, f(t) = 0

Dust radius (R_{IR}) can be inferred from IR time delay w.r.t OUV emissions.

 $R_{\rm IR} = c\Delta T/2$

One simplest normalized box function is

 $f(t) = 1/\Delta T$, if $0 < t < \Delta T$. Otherwise, f(t) = 0

DESY. | Multimessenger Modelling of Neu-Coincident TDEs | Chengchao Yuan, 17/11/2023

IR light curve fitting

$$L_{\rm IR}(t) = \epsilon_{\Omega} \epsilon_{\rm IR} \left[L_{\rm OUV}(t') f(t-t') dt' \right]$$

 $\epsilon_{\Omega} = \Omega_{\text{dust}} / (4\pi)$: solid angle coverage $\epsilon_{\rm IR}$: re-emitting efficiency

To fit IR light curves for AT2019dsg/fdr/aalc, $\epsilon_{\Omega}\epsilon_{\mathrm{IR}} \sim 0.3 - 0.5$

Dust radius (R_{IR}) can be inferred from IR time delay w.r.t OUV emissions.

 $R_{\rm IR} = c\Delta T/2$

One simplest normalized box function is

 $f(t) = 1/\Delta T$, if $0 < t < \Delta T$. Otherwise, f(t) = 0

Dust radius (R_{IR}) can be inferred from IR time delay w.r.t OUV emissions.

 $R_{\rm IR} = c\Delta T/2$

One simplest normalized box function is

 $f(t) = 1/\Delta T$, if $0 < t < \Delta T$. Otherwise, f(t) = 0

Questions for Neutrino-Coincident TDEs (revisited)

- Where are radio, OUV, IR, X-ray (XRT, eROSITA, NICER), γ -ray and neutrino emissions produced?
- Temporal signatures? delayed infrared and neutrino emissions, EM counterparts in time domain
- Multi-messenger implications, e.g., from X-ray/ γ -ray up limits to neutrino constraints

What we have

- Thermal optical/ultraviolet, X-ray, and infrared spectra/light curves.
- Up limits from γ -ray flux by Fermi, HAWC etc
- Neutrino correlation: detection time, energy

What we need for existing observations

- Radiation sites: jet, wind, disk corona, etc
- CR acceleration/injection
- Theoretical/numerical modeling of interactions

Multi-Messenger Modeling of Neutrino-Coincident Tidal Disruption Events

- Theoretical and observational pictures of TDEs
- Particle interactions and isotropic hidden winds models with dust echoes
- Neutrino and EM cascade emissions from neutrino-emitting TDEs, AT2019dsg and AT2019fdr
- A fourth neutrino-coincident with strong dust echo??
- Open questions and outlook

Proton injection

Four parameters: $E_{p,\min} \sim 1$ GeV, spectra index p = 2, $E_{p,\max}$ (free-param), normalization factor

Example - AT2019dsg: $M_{\rm SMBH} \simeq 5 \times 10^6 M_{\odot}$ (van Velzen et al. 2021)

We use four parameters to determine the proton injection (do not specify the accelerator)

- Normalization $\int dE_p E_p \dot{Q}(E_p) = L_p / (4\pi R^3/3)$
- $L_p(t) = \varepsilon_{\rm diss} \dot{M}_{\star}(t) c^2$

Assumptions

- $\dot{M}_{\star}(t)/L_{\text{OUV}}(t) = \text{const}$
- $\dot{M}_{\star,\rm peak}/\dot{M}_{\rm Edd} \sim 10$ (10-100 from Dai+, 2018)
- Efficient energy dissipation to CRs: $\varepsilon_{\rm diss}\simeq 0.2$
- Proton diffusion in Bohm regime $D = R_L c$

Production of High-Energy Astrophysical Neutrinos

Numerical Method: AM³ (Astrophysical Multi-Messenger Modeling)

Numerically solving the coupled PDEs for electron, proton, neutrons, neutrino and photon distributions.

$$\partial_{t}n_{i} = Q_{i,ext} + \sum_{k} Q_{int,k \rightarrow i} - \partial_{E}(\dot{E} \cdot n_{i}) - (\alpha_{i,esc} + \alpha_{i,adv})n_{i}$$

Escape/Advection
Simplified data flow
Electrons/
 $\partial_{t}N_{e} = -\partial_{A}[A_{e} \cdot N_{e} - B_{e} \cdot \partial_{A}N_{e}] - (\alpha_{e,esc} + \alpha_{e,annihi})N_{e} + \varepsilon_{e,ext} + \sum \varepsilon_{e,internal}$
Neutrino
 $\partial_{t}N_{v} = -\alpha_{v,esc}N_{v} + \sum \varepsilon_{i,int}$ Intermediate particles: $\mu^{\pm}, \pi^{\pm}, \pi^{0}$
Photon
 $\partial_{t}N_{v} = -(\alpha_{r,esc} + \alpha_{r,ssc} + \alpha_{r,sc} + \alpha_{r,ryr} + \alpha_{r,BH} + \alpha_{r,pr})N_{r} + \varepsilon_{r,ext} + \sum \varepsilon_{v,internal}$
Proton
 $\partial_{i}N_{p} = -\partial_{A}[A_{p} \cdot N_{p} - B_{p} \cdot \partial_{A}N_{p}] - (\alpha_{p,esc} + \alpha_{p,pr} + \alpha_{p,pp})N_{p} + \varepsilon_{p,ext}$
Neutron
 $\partial_{r}N_{n} = -(\alpha_{n,esc} + \alpha_{n,nr})N_{n} + \varepsilon_{n,int}$
Primary e^{\pm} injections are not considered in this calculation (will be discussed in later

slides)

DESY. | Multi-Messenger modeling of TDEs | Chengchao Yuan, 2023/09/14

Numerical Method: AM³ (Astrophysical Multi-Messenger Modeling)

Numerically solving the coupled PDEs for electron, proton, neutrons, neutrino and photon distributions.

DESY. | Multi-Messenger modeling of TDEs | Chengchao Yuan, 2023/09/14

EM cascade spectra of AT2019dsg: IR target photons

 $p\gamma$ optically thin $t_{p\gamma}^{-1}/t_{fs}^{-1} < 1$: ($\pi^{\pm} \rightarrow e^{\pm} \rightarrow SY/IC$) + ($\gamma\gamma \rightarrow e^{\pm} \rightarrow SY/IC$)

Parameters: $\varepsilon_{diss} = 0.2$

AT2019dsg: M-IR (t_{ν})

 $B = 0.1 \text{ G}, R = R_{IR}, E_{p,\text{max}} = 5 \times 10^9 \text{ GeV}$

 $p\gamma$ efficient (calorimetric) but not very fast (optically thin)

AT2019dsg Temporal signatures

Dust echo IR scenario: $\varepsilon_{diss} = 0.2, B = 0.1$ G, $R = 5 \times 10^{16}$ cm, $E_{p,max} = 5 \times 10^9$ GeV

Rapid (exponential) decay of early Xray light curve:

- Accretion disk cooling?
- Not the jet/wind signature

Fermi-LAT up limits

Interval	MJD Start	MJD Stop	\mathbf{UL}
			$[{\rm erg}~{\rm cm}^{-2}~{\rm s}^{-1}]$
G1	58577	58707	2.6×10^{-12}
G2	58707	58807	1.2×10^{-11}
G3	58577	58879	2.0×10^{-12}

Extended Data Fig. 7 | Gamma-ray energy flux upper-limits for AT2019dsg. The values are derived assuming a point-source with power-law index Γ =2.0 at the position of AT2019dsg, integrated over the analysis energy range 0.1-800 GeV. Stein et al. 2021

~50 days time delay is compatible with $p\gamma$ interaction time $t_{p\gamma} \sim 10-100~{\rm d}$

Compact region close to disk corona (OUV photon dominant, M-OUV)

 $p\gamma$ optically thick $t_{p\gamma}^{-1}/t_{fs}^{-1} > 1$: EM cascade light curves follows OUV light curve, no significant time delay

 $B = 0.1 \text{ G}, R \sim \times 10^{15} \text{ cm}, E_{p,\text{max}} = 1 \times 10^8 \text{ GeV}$

Cascade emission peaks in LAT energy

range -> overshoots the γ -ray limits

Constraints on $E_{p,\max}$, R and neutrino rates Expected Gamma-ray Follow Up (GFU) neutrino number

$$\mathcal{N}_{\nu}(\text{GFU}) = \int dE_{\nu} \int^{t_{\nu}} dt F_{\nu}(E_{\nu}, t) A_{\text{eff}}(E_{\nu})$$

AT2019dsg: B = 0.1 G

To avoid violating Fermi UL (red curve)

- An extended radiation zone is preferred (exclude M-OUV scenario)
- Neutrino number is constrained to be 0.01-0.1 per TDE
- Expected neutrino number from AT2019dsg, 0.008-0.76 (Stein+ 2021), is consistent with Fermi UL

Above blue dashed line -> pg optically thick -> no significant time delay; otherwise a time delay of $t_{p\gamma} \sim 10 - 100$ d is expected

DESY. | Multimessenger Modelling of Neu-Coincident TDEs | Chengchao Yuan, 17/11/2023

Constraints on $E_{p,\max}$, R and neutrino rates: impact of B

- CRs are more strongly confined with a stronger magnetic field, which enables a less compact region to be a promising neutrino emitter. (Easier to overshoot γ-ray up limits)
- Conclusions do not change significantly

Test lepton (*e*[±]**) injections**

Electron injection spectra

- $dN_e/d\gamma_e \propto \gamma_e^{-2}$
- $\gamma_{e,\min} = 300, \ \gamma_{e,\max} = 10^5 \ (AGNs)$
- Magnetic field 0.1 G
- Lepton loading factor L_e/L_p varies from 10^{-4} to 1 (magenta to blue dashed lines).

Cascade emission dominates if $L_e/L_p < 10^{-2}$

(Supported by the absence of radio signals accompanying OUV/IR)

Caveat: leptonic contribution depends on electron minimum energy and magnetic field strengths

AT2019dsg: M-IR (t_v , $\gamma_{e, \min} = 300$, $\gamma_{e, \max} = 10^5$, B = 0.1 G)

AT2019fdr

R [cm]

z = 0.267 $M_{\text{SMBH}} = 1.3 \times 10^7 M_{\odot}$ $E_{\nu} = 82 \text{ TeV}$ **M-IR:** • $R = 5 \times 10^{15} \text{ cm}$ • $E_{p,\text{max}} = 10^8 \text{ GeV}$ **M-OUV:** • $R = 2.5 \times 10^{17} \text{ cm}$

- $E_{p,\text{max}} = 5 \times 10^9 \text{ GeV}$
- For M-IR model, pgamma interaction is less efficient than AT2019dsg
- time delays in X-ray and gamma-ray bands are more prominent, and are determined jointly by target IR peak time and pgamma time scale.

10-6 Yuan & Winter 2023 ApJ

Summary

- EM cascade processes in TDE winds can produce detectable (hard) X-ray/γ-ray emissions. The model can be tested/constrained by future observations or current upper limits.
- Significant (~10-100 days) time delay is expected in the $p\gamma$ optically thin regime. Time-dependent analyses are needed (steady state may not be achieved with some source parameters).
- To be an efficient neutrino emitter, the accompanying cascade emission would overshoot the X-ray/γ-ray constraints. Fermi upper limits implies ≤ 0.1 neutrinos per TDE! (jets? γ-ray obscured/ hidden models? Off-axis jet?)

DESY. | Multimessenger Modelling of Neu-Coincident TDEs | Chengchao Yuan, 17/11/2023

Multi-Messenger Modeling of Neutrino-Coincident Tidal Disruption Events

- Theoretical and observational pictures of TDEs
- Particle interactions and isotropic hidden winds models with dust echoes
- Neutrino and EM cascade emissions from neutrino-emitting TDEs, AT2019dsg and AT2019fdr
- A fourth neutrino-coincident with strong dust echo??
- Open questions and outlook

- AT2021lwx (ZTF20abrbeie; aka "Barbie" Subrayan+ 2023)
- Very far away: z = 0.995 (0.05 for AT2019dsg, 0.26 for AT2019fdr, 0.04 for aalc)
- Super bright peak OUV bolometric luminosity: > 10^{46} erg s⁻¹ (super-Eddington)
- SMBH mass ~ $10^8 M_{\odot}$, M_{\star} ~ $14 M_{\odot}$ (Subrayan+ 2023)
- Potential correlation with neutrino IC220405B: angular offset ~ 2.5 deg; time delay in SMBH frame: 185 d
- Similarities with other 3 TDEs: bright thermal OUV emission; strong dust echo (Wiseman+ 2023); similar neutrino time delay in source rest frame

Caveat:

AT2021lwx is not uniquely identified as TDEs of very large star mass; could be produced by the accretion of a giant molecular cloud onto a SMBH of $10^8 - 10^9 M_{\odot}$ (Wiseman+ 2023)

- AT2021lwx (ZTF20abrbeie; aka "Barbie" Subrayan+ 2023)
- Very far away: z = 0.995 (0.05 for AT2019dsg, 0.26 for AT2019fdr, 0.04 for aalc)
- Super bright peak OUV bolometric luminosity: > 10^{46} erg s⁻¹ (super-Eddington)
- SMBH mass ~ $10^8 M_{\odot}$, M_{\star} ~ $14 M_{\odot}$ (Subrayan+ 2023)
- Potential correlation with neutrino IC220405B: angular offset ~ 2.5 deg; time delay in SMBH frame: 185 d
- Similarities with other 3 TDEs: bright thermal OUV emission; strong dust echo (Wiseman+ 2023); similar neutrino time delay in source rest frame

Caveat:

AT2021lwx is not uniquely identified as TDEs of very large star mass; could be produced by the accretion of a giant molecular cloud onto a SMBH of $10^8 - 10^9 M_{\odot}$ (Wiseman+ 2023)

Similarities with other 3 TDEs: bright thermal OUV emission; strong dust echo (Wiseman+ 2023); similar neutrino time delay in source rest frame

Dust echo fitting:

- One simple box function cannot fit early IR emission (magenta curve)
- The contribution from dust on the line of slight (LoS) could be enhanced, e.g., by the debris. For example

$$f(t) = f_l(t) + f_s(t)$$

= $\lambda \delta(t) + \frac{(1-\lambda)}{2\Delta T} [H(t) - H(t - 2\Delta T)]$

- LoS component (no delay): cyan curve
- Spherical component: magenta curve
- No significant decrease observed so far -> IR peak is uncertain -> $\Delta T \sim 180 330$ (red areas) $\lambda \sim 0.3 0.4$

$$R_{\rm IR} \sim 5 \times 10^{17} - 10^{18} \,\,{\rm cm}$$

(Follow up IR observations could reduce the uncertainties of IR fitting)

- Similarities with other 3 TDEs: bright thermal OUV emission; strong dust echo (Wiseman+ 2023); similar neutrino time delay in source rest frame
- Neutrino fluences and luminosities also share some similarities

DESY. | Multimessenger Modelling of Neu-Coincident TDEs | Chengchao Yuan, 17/11/2023

CR acceleration in IR radiation zones with B = 0.1 G

Acceleration rate : $t_{\rm acc}^{-1} = \eta_{\rm acc} c/R_L = \eta_{\rm acc} eBc/E_p$

Larger $\eta_{\rm acc}$ -> more efficient acceleration

E_max is achievable for a reasonable $\eta_{acc} \sim 0.3 - 1$ by balancing acc. rate (blue lines) to energy loss rate (red curves), similar to AT2019dsg/fdr/aalc

Open Questions and on going works

- Distinguishing TDEs from impostors
- One unified picture for jetted and non-jetted TDEs (like AGNs), e.g., *Dai* + 2018?
- Months to years time delay of neutrino coincidence (AT2019dsg/fdr/aalc) common for TDEs?
- Self-consistent modeling of the dynamics of TDE jets/winds with persistent energy inputs (CY+, work in progress)
- Can TDEs be promising (VHE) γ-ray emitters? origin of UHECRs (P. Plotko +, in prep.)? Contribute to diffuse neutrino flux?
- ^D Cosmological TDE rate? ν -coincident rate?

What we may need in the future

- a bold guess -

- Better angular resolution for neutrino tracks
- \Box GeV to VHE γ -ray data/constraints from Fermi, HAWC, VERITAS, etc. in time domain (late-time followup)
- □ MeV missions between hard X-ray and sub-GeV
- □ Time-dependent lepto-hadronic modeling of TDE jets/winds leptonic process can be important in jets or for a stronger *B* or sufficient leptonic loading $L_e/L_p \gtrsim 10^{-2}$
- □ (Surprise us: GWs by LISA? ...)

Andreoni+ 2022. Nature

Backup Slides

CR acceleration with B = 0.1 G

 $t_{\rm acc}^{-1} = \eta_{\rm acc} c/R_L = \eta_{\rm acc} eBc/E_p$

Larger $\eta_{\rm acc}$ implies efficient CR acceleration; $E_{\rm max}$ depends on BB = 0.1 - 1 G is conservative for M-OUV cases ($R \sim 10^{15}$ cm, acceleration sites are close to hot corona, B can be much larger, e.g., $\sim k$ G)

Table 1. Observational and TDE modeling parameters for AT2019dsg and AT2019fdr. In all scenarios, the universal values of energy dissipation efficiency $\varepsilon_{\text{diss}} = 0.2$ and magnetic field strength B = 0.1 G are used.

	$\mathbf{AT2019dsg}^{a}$		$\mathbf{AT2019}\mathbf{fdr}^{b}$		
	z=0.051,~M	$z=0.051,~M=5 imes 10^{6} M_{\odot},~t_{ m dyn}=670~ m d$		$z=0.267,~M=1.3 imes 10^7 M_{\odot},~t_{ m dyn}=1730~ m d$	
$k_B T_{\rm X, \ OUV, \ IR}$	72 eV, 3.4 eV, 0.16 eV		56 eV, 1.2 eV , 0.14 eV		
$E_{ u}$	217 TeV (IC191001A)		82 TeV (IC200530 A)		
$t_ u - t_{ m pk}$	154 d		324 d		
$N_{ m u}({ m GFU})^{ m c}$	0.008 - 0.76		0.007 - 0.13		
Scenario	M-IR	M-OUV	M-IR	M-OUV	
$R \; [m cm]$	$5.0 imes10^{16}$	$5.0 imes10^{14}$	$2.5 imes10^{17}$	5.0×10^{15}	
$E_{p,\max}$ [GeV]	$5.0 imes 10^9$	$1.0 imes 10^8$	$5.0 imes10^9$	$1.0{ imes}10^8$	

^aAT2019dsg data references: redshift z, expected neutrino number via IceCube GFU searches N_{ν} (GFU), T_{OUV} and T_{X} (Stein et al. 2021); SMBH mass M (van Velzen et al. 2021b); peak time of OUV light curve t_{pk} (Stein et al. 2021); Neutrino energy E_{ν} (IceCube Collaboration 2019a); T_{IR} (Winter & Lunardini 2023).

^bAT2019fdr data references: z, t_{pk}, N_{ν} (GFU), T_{OUV}, T_X and T_{IR} (Reusch et al. 2022); M (van Velzen et al. 2021b); E_{ν} (IceCube Collaboration 2019b).

^cExpected neutrino number from IceCube gamma-ray follow up (GFU) searches.

Description	Parameter	Value
SMBH mass $[M_{\odot}]$	$M_{ m BH}$	10^{8}
${ m Star} { m mass} { m [}M_{\odot}{ m]}$	M_*	14
Redshift	z	0.995
OUV peak time (MJD)	$t_{ m pk}$	59291
Peak accretion rate	$\dot{M}_{ m BH}(t_{ m pk})$	$39 L_{ m Edd}/c^2$
Accreted Mass	$\int \dot{M}_{ m BH} dt$	$M_*/2$
Neutrino observation	IC220405B	
Detection time [d]	$t_ u - t_{ m pk}$	~ 370
Energy [TeV]	$E_{ u}$	106
Angular deviation [°]	$\Delta heta$	$2.7^{+1.7}_{-1.3}$
$\mathbf{IR} \mathbf{model}$		
Proton efficiency	ϵ_p	0.2
Accretion component	$f_{ m IR,OUV}$	0.2
Dust echo component	$f_{ m IR,DE}$	0.3 (0.4)
IR time delay [d]	ΔT	180(330)
Radius [cm]	$R_{ m IR}$	$5.4 imes 10^{17} \ (10^{18})$
Max proton energy $[GeV]$	$E_{p,\max}$	$1.5 imes 10^9$
Magnetic field [G]	B	0.1
OUV energy	$\int L_{ m OUV} dt$	$0.26~M_{\odot}c^2$
IR energy	$\int L_{ m IR} dt$	0.1 - $0.13 M_\odot c^2$

Table 1. Observational and Model Parameters for AT2021lwx AT2021lwx

Parameters and EM cascade SEDs

Radiation processes

Primary e^{\pm} injections are not considered in this calculation (will be discussed in later slides)

Neutrino production: $p\gamma/pp \rightarrow \pi^{\pm} \rightarrow \nu_e \bar{\nu}_e \nu_\mu \bar{\nu}_\mu$

Proton synchrotron: *p*

$$p \xrightarrow{B} \gamma + p'$$
magnetic field

Cascade processes: $\pi^0 \rightarrow 2\gamma$

Particle cooling: $p \rightarrow p'$ $(e^{\pm}) \rightarrow (e^{\pm})' \rightarrow (e^{\pm})''$ $(\mu^{\pm}) \rightarrow (\mu^{\pm})'$

$$p\gamma_{bb}/pp \to \pi^{\pm} \to (\mu^{\pm})(e^{\pm}) \xrightarrow{B}_{\text{magnetic field}} (\mu^{\pm})'(e^{\pm})' + \gamma, \ (e^{\pm})' + \gamma \to (e^{\pm})'' + \gamma'$$

$$\gamma \gamma \to (e^{\pm}) \xrightarrow{B}_{\text{magnetic field}} (e^{\pm})' + \gamma, \ (e^{\pm})' + \gamma \to (e^{\pm})'' + \gamma'$$

Bethe-Heitler (BH) pair production $p\gamma_{bb} \rightarrow p'(e^{\pm}) \xrightarrow{B} (e^{\pm})' + \gamma, \ (e^{\pm})' + \gamma \rightarrow (e^{\pm})'' + \gamma'$

EM cascade spectra of AT2019dsg: M-OUV

 $p\gamma$ optically thick $t_{p\gamma}^{-1}/t_{fs}^{-1} > 1$: ($\pi^{\pm} \rightarrow e^{\pm} \rightarrow SY/IC$) + ($\gamma\gamma \rightarrow e^{\pm} \rightarrow SY/IC$)

Parameters: $\varepsilon_{diss} = 0.2$ B = 0.1 G, $R = 5 \times 10^{14}$ cm, $E_{p,max} = 1 \times 10^{8}$ GeV $R_{IR} \gg R \rightarrow IR$ subdominant ($n \propto L_{IR}R^{-2}c^{-1}$)

EM cascade spectra of AT2019dsg: M-OUV

 $p\gamma$ optically thick $t_{p\gamma}^{-1}/t_{fs}^{-1} > 1$: ($\pi^{\pm} \rightarrow e^{\pm} \rightarrow SY/IC$) + ($\gamma\gamma \rightarrow e^{\pm} \rightarrow SY/IC$)

Parameters: $\varepsilon_{\text{diss}} = 0.2$ $B = 0.1 \text{ G}, R = 5 \times 10^{14} \text{ cm}, E_{p,\text{max}} = 1 \times 10^8 \text{ GeV}$ $R_{IR} \gg R \rightarrow \text{IR subdominant} (n \propto L_{IR}R^{-2}c^{-1})$

- Small *R* leads to fast proton escape
- $E_{p\gamma,\min} \sim 10^{6-7} \text{ GeV}$
- Synchrotron peak energy > GeV
- Attenuated before reaching the peak -> spikes
- Promising neutrino emitter in the neutrino energy range

AT2019dsg Temporal signatures: M-OUV

Compact region: $\epsilon_{diss} = 0.2, B = 0.1 \text{ G}, R = 5 \times 10^{14} \text{ cm}, E_{p,max} = 1 \times 10^8 \text{ GeV}$

In this compact and dense region, interactions occur very fast

- $p\gamma$ optically thick: $t_{p\gamma}^{-1}/t_{fs}^{-1} > 1$
- Cascade emissions follows OUV light curve (no significant time delay)
- Cascade emission peaks in LAT energy

range -> overshooting the γ -ray limits

Jetted TDEs

A recent example: AT2022cmc (In addition to Swift J1644+57 and Swift J2058+05)

- z = 1.193
- Very bright
- Non-thermal X-rays may be produced by relativistic jets
 (≥ 10⁴⁸ erg/s, usually 10^42-44 erg/s)
- A very high Lorentz factor $\Gamma \sim 90$ is assumed (~10 for blazars)

Observer-frame frequency (Hz)