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Abstract
The historical coincident detection of gravitational waves (GWs) and electromagnetic
(EM) counterparts from the binary neutron star merger event GW 170817 heralds a
new era in multi-messenger astronomy. At the same time, since the first discovery of
the high-energy astrophysical neutrinos in 2012 by IceCube, neutrino astrophysics has
made significant progress and has started playing an increasingly important role in
multi-messenger analyses. We are currently in the stage where we can probe the nature of
the extreme astrophysical phenomena with the synergies between EM photons, neutrinos,
GWs, and cosmic rays.

In this dissertation, I start with an overview of the development of multi-messenger
astrophysics and its application to astrophysical mergers. I will present our work on the
cumulative di�use neutrino background from galaxy/cluster mergers and show that our
scenario can explain the di�use neutrino flux without violating the extragalactic “-ray
background constraints (chapter 2). We further demonstrate that the synchrotron and
inverse Compton emissions produced by secondary electrons/positrons are consistent with
the radio and X-ray observations of merging galaxies such as NGC 660 and NGC 3256
(chapter 3). In chapters 4 & 5, we focus on the jet-induced neutrino and EM counterparts
from supermassive black hole (SMBH) mergers subsequent to GW radiation and discuss
the detection perspectives for the ongoing and next-generation neutrino, optical, and
GW missions. The short “-ray bursts, which are generally thought to arise from compact
binary object (CBO) mergers, could be promising candidates for multi-messenger studies.
We then consider a special scenario where short GRBs are embedded in disks of active
galactic nuclei (AGN) and investigate their GeV signatures in chapter 6.

In a separate e�ort, we study the stacking and multiplet constraints on the blazar
contribution to the cumulative di�use neutrino flux, assuming a generic relationship
between neutrino and “-ray luminosities (chapter 7). We show that these two limits
are complementary, and our results support the argument that blazars are disfavored as
the dominant sources of the 100-TeV neutrino background. This work provides rather
general and stringent constraints for future studies of blazar neutrinos.
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